How to determine the appropriate mortality in experimental larval rearing? View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-03

AUTHORS

Tomonari Kotani, Masashi Yokota, Hiroshi Fushimi, Seiichi Watanabe

ABSTRACT

Survival in larval rearing experiments is difficult to estimate due to accidental losses and periodic sampling. The number of sampled fish can be a large proportion of the stocked ones, making it difficult to calculate the overall survival rate and mortality coefficient as this is based on the initial number. Here, a new method of calculating survival is proposed using the mortality coefficient. When the initial stocking density and sampled and final numbers are known, and assuming that mortality coefficient is constant, the final number of fishes can be represented by the formula Nt = e−mt(N0 − ΣNSnemdn), where t is rearing period (days), N0 indicates initial number, Nt indicates the survival number at t days of rearing, m is the natural mortality coefficient, NSn is the sampled number in the nth sampling, and dn is the rearing period until removal of the nth sample. The provisional mortality coefficient is calculated from initial and final stocking numbers. Then values for the natural mortality coefficient are substituted into the formula with successive approximation. The coefficient, which most closely approximates the actual survival, is determined as the best fit natural mortality coefficient. Examples of larval experiments are provided to demonstrate the method and show that survival is often underestimated using traditional methods. More... »

PAGES

255-261

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12562-011-0329-8

DOI

http://dx.doi.org/10.1007/s12562-011-0329-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047510163


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kagoshima University", 
          "id": "https://www.grid.ac/institutes/grid.258333.c", 
          "name": [
            "Department of Marine Biotechnology, Faculty of Life Science and Biotechnology, Fukuyama University, 452-10 Innoshima-Ohama, 722-2101, Onomichi, Hiroshima, Japan", 
            "Faculty of Fisheries, Kagoshima University, 4-50-20 Shimoarata, 890-0056, Kagoshima, Kagoshima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kotani", 
        "givenName": "Tomonari", 
        "id": "sg:person.015556203241.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015556203241.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo University of Marine Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.412785.d", 
          "name": [
            "Department of Marine Biosciences, Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, 108-8477, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yokota", 
        "givenName": "Masashi", 
        "id": "sg:person.01355557407.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355557407.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fukuyama University", 
          "id": "https://www.grid.ac/institutes/grid.411589.0", 
          "name": [
            "Department of Marine Biotechnology, Faculty of Life Science and Biotechnology, Fukuyama University, 452-10 Innoshima-Ohama, 722-2101, Onomichi, Hiroshima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fushimi", 
        "givenName": "Hiroshi", 
        "id": "sg:person.07437431342.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07437431342.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo University of Marine Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.412785.d", 
          "name": [
            "Department of Marine Biosciences, Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, 108-8477, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Watanabe", 
        "givenName": "Seiichi", 
        "id": "sg:person.0641313501.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641313501.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.aquaculture.2007.04.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001123768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1046/j.1444-2906.2003.00655.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001137456", 
          "https://doi.org/10.1046/j.1444-2906.2003.00655.x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-7345.1992.tb00796.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003796895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1111/j.1444-2906.2006.01241.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004420562", 
          "https://doi.org/10.1111/j.1444-2906.2006.01241.x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0044-8486(98)00386-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005874584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0044-8486(89)90005-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015188648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0044-8486(89)90005-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015188648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-7345.1989.tb00521.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022819459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0044-8486(94)90112-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028898032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0044-8486(94)90112-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028898032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0044-8486(01)00692-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034461576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0044-8486(00)00479-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036748204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-7345.1993.tb00572.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049277729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-7345.1993.tb00572.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049277729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0044-8486(94)00215-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049683428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1007419012642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049832871", 
          "https://doi.org/10.1023/a:1007419012642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3354/meps053191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071166077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3354/meps121301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071173301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3354/meps178039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071174889"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-03", 
    "datePublishedReg": "2011-03-01", 
    "description": "Survival in larval rearing experiments is difficult to estimate due to accidental losses and periodic sampling. The number of sampled fish can be a large proportion of the stocked ones, making it difficult to calculate the overall survival rate and mortality coefficient as this is based on the initial number. Here, a new method of calculating survival is proposed using the mortality coefficient. When the initial stocking density and sampled and final numbers are known, and assuming that mortality coefficient is constant, the final number of fishes can be represented by the formula Nt = e\u2212mt(N0 \u2212 \u03a3NSnemdn), where t is rearing period (days), N0 indicates initial number, Nt indicates the survival number at t days of rearing, m is the natural mortality coefficient, NSn is the sampled number in the nth sampling, and dn is the rearing period until removal of the nth sample. The provisional mortality coefficient is calculated from initial and final stocking numbers. Then values for the natural mortality coefficient are substituted into the formula with successive approximation. The coefficient, which most closely approximates the actual survival, is determined as the best fit natural mortality coefficient. Examples of larval experiments are provided to demonstrate the method and show that survival is often underestimated using traditional methods.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12562-011-0329-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1023112", 
        "issn": [
          "0919-9268", 
          "1444-2906"
        ], 
        "name": "Fisheries Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "77"
      }
    ], 
    "name": "How to determine the appropriate mortality in experimental larval rearing?", 
    "pagination": "255-261", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e2528f09053f3cd8e61415293e1b2f2805ad9df7109955b243a3380971f3090c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12562-011-0329-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047510163"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12562-011-0329-8", 
      "https://app.dimensions.ai/details/publication/pub.1047510163"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000537.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs12562-011-0329-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12562-011-0329-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12562-011-0329-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12562-011-0329-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12562-011-0329-8'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12562-011-0329-8 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N05fd6190ea034a8abc70a961abdf816d
4 schema:citation sg:pub.10.1023/a:1007419012642
5 sg:pub.10.1046/j.1444-2906.2003.00655.x
6 sg:pub.10.1111/j.1444-2906.2006.01241.x
7 https://doi.org/10.1016/0044-8486(89)90005-7
8 https://doi.org/10.1016/0044-8486(94)00215-a
9 https://doi.org/10.1016/0044-8486(94)90112-0
10 https://doi.org/10.1016/j.aquaculture.2007.04.048
11 https://doi.org/10.1016/s0044-8486(00)00479-8
12 https://doi.org/10.1016/s0044-8486(01)00692-5
13 https://doi.org/10.1016/s0044-8486(98)00386-x
14 https://doi.org/10.1111/j.1749-7345.1989.tb00521.x
15 https://doi.org/10.1111/j.1749-7345.1992.tb00796.x
16 https://doi.org/10.1111/j.1749-7345.1993.tb00572.x
17 https://doi.org/10.3354/meps053191
18 https://doi.org/10.3354/meps121301
19 https://doi.org/10.3354/meps178039
20 schema:datePublished 2011-03
21 schema:datePublishedReg 2011-03-01
22 schema:description Survival in larval rearing experiments is difficult to estimate due to accidental losses and periodic sampling. The number of sampled fish can be a large proportion of the stocked ones, making it difficult to calculate the overall survival rate and mortality coefficient as this is based on the initial number. Here, a new method of calculating survival is proposed using the mortality coefficient. When the initial stocking density and sampled and final numbers are known, and assuming that mortality coefficient is constant, the final number of fishes can be represented by the formula Nt = e−mt(N0 − ΣNSnemdn), where t is rearing period (days), N0 indicates initial number, Nt indicates the survival number at t days of rearing, m is the natural mortality coefficient, NSn is the sampled number in the nth sampling, and dn is the rearing period until removal of the nth sample. The provisional mortality coefficient is calculated from initial and final stocking numbers. Then values for the natural mortality coefficient are substituted into the formula with successive approximation. The coefficient, which most closely approximates the actual survival, is determined as the best fit natural mortality coefficient. Examples of larval experiments are provided to demonstrate the method and show that survival is often underestimated using traditional methods.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N2226337a090644b192f5af988b6c15c9
27 Ndc4703693778457f9bd35ec511fe7d08
28 sg:journal.1023112
29 schema:name How to determine the appropriate mortality in experimental larval rearing?
30 schema:pagination 255-261
31 schema:productId N47e585e4fbed4ccbbee5a4bd43b907b7
32 N84e0f1964ad447b6892b4205115abeb0
33 Ne0c73ccee6174e4ea80a6ec0880287e4
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047510163
35 https://doi.org/10.1007/s12562-011-0329-8
36 schema:sdDatePublished 2019-04-11T02:16
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N4a7c4bf2a7b543a2a9d31cabf3ccecb2
39 schema:url http://link.springer.com/10.1007%2Fs12562-011-0329-8
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N05fd6190ea034a8abc70a961abdf816d rdf:first sg:person.015556203241.92
44 rdf:rest N53b90d8afa8a43ff94a417e7ad8918ab
45 N2226337a090644b192f5af988b6c15c9 schema:issueNumber 2
46 rdf:type schema:PublicationIssue
47 N47e585e4fbed4ccbbee5a4bd43b907b7 schema:name readcube_id
48 schema:value e2528f09053f3cd8e61415293e1b2f2805ad9df7109955b243a3380971f3090c
49 rdf:type schema:PropertyValue
50 N4a7c4bf2a7b543a2a9d31cabf3ccecb2 schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 N53b90d8afa8a43ff94a417e7ad8918ab rdf:first sg:person.01355557407.54
53 rdf:rest N99b6cb240e8d4a31b6d949aab4219d14
54 N84e0f1964ad447b6892b4205115abeb0 schema:name dimensions_id
55 schema:value pub.1047510163
56 rdf:type schema:PropertyValue
57 N9426921af847479b807b8e61f4a5e5f4 rdf:first sg:person.0641313501.42
58 rdf:rest rdf:nil
59 N99b6cb240e8d4a31b6d949aab4219d14 rdf:first sg:person.07437431342.37
60 rdf:rest N9426921af847479b807b8e61f4a5e5f4
61 Ndc4703693778457f9bd35ec511fe7d08 schema:volumeNumber 77
62 rdf:type schema:PublicationVolume
63 Ne0c73ccee6174e4ea80a6ec0880287e4 schema:name doi
64 schema:value 10.1007/s12562-011-0329-8
65 rdf:type schema:PropertyValue
66 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
67 schema:name Medical and Health Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
70 schema:name Clinical Sciences
71 rdf:type schema:DefinedTerm
72 sg:journal.1023112 schema:issn 0919-9268
73 1444-2906
74 schema:name Fisheries Science
75 rdf:type schema:Periodical
76 sg:person.01355557407.54 schema:affiliation https://www.grid.ac/institutes/grid.412785.d
77 schema:familyName Yokota
78 schema:givenName Masashi
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355557407.54
80 rdf:type schema:Person
81 sg:person.015556203241.92 schema:affiliation https://www.grid.ac/institutes/grid.258333.c
82 schema:familyName Kotani
83 schema:givenName Tomonari
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015556203241.92
85 rdf:type schema:Person
86 sg:person.0641313501.42 schema:affiliation https://www.grid.ac/institutes/grid.412785.d
87 schema:familyName Watanabe
88 schema:givenName Seiichi
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641313501.42
90 rdf:type schema:Person
91 sg:person.07437431342.37 schema:affiliation https://www.grid.ac/institutes/grid.411589.0
92 schema:familyName Fushimi
93 schema:givenName Hiroshi
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07437431342.37
95 rdf:type schema:Person
96 sg:pub.10.1023/a:1007419012642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049832871
97 https://doi.org/10.1023/a:1007419012642
98 rdf:type schema:CreativeWork
99 sg:pub.10.1046/j.1444-2906.2003.00655.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001137456
100 https://doi.org/10.1046/j.1444-2906.2003.00655.x
101 rdf:type schema:CreativeWork
102 sg:pub.10.1111/j.1444-2906.2006.01241.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004420562
103 https://doi.org/10.1111/j.1444-2906.2006.01241.x
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/0044-8486(89)90005-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015188648
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/0044-8486(94)00215-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1049683428
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/0044-8486(94)90112-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028898032
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.aquaculture.2007.04.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001123768
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/s0044-8486(00)00479-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036748204
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/s0044-8486(01)00692-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034461576
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/s0044-8486(98)00386-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005874584
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1111/j.1749-7345.1989.tb00521.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022819459
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1111/j.1749-7345.1992.tb00796.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003796895
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1111/j.1749-7345.1993.tb00572.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049277729
124 rdf:type schema:CreativeWork
125 https://doi.org/10.3354/meps053191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071166077
126 rdf:type schema:CreativeWork
127 https://doi.org/10.3354/meps121301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071173301
128 rdf:type schema:CreativeWork
129 https://doi.org/10.3354/meps178039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071174889
130 rdf:type schema:CreativeWork
131 https://www.grid.ac/institutes/grid.258333.c schema:alternateName Kagoshima University
132 schema:name Department of Marine Biotechnology, Faculty of Life Science and Biotechnology, Fukuyama University, 452-10 Innoshima-Ohama, 722-2101, Onomichi, Hiroshima, Japan
133 Faculty of Fisheries, Kagoshima University, 4-50-20 Shimoarata, 890-0056, Kagoshima, Kagoshima, Japan
134 rdf:type schema:Organization
135 https://www.grid.ac/institutes/grid.411589.0 schema:alternateName Fukuyama University
136 schema:name Department of Marine Biotechnology, Faculty of Life Science and Biotechnology, Fukuyama University, 452-10 Innoshima-Ohama, 722-2101, Onomichi, Hiroshima, Japan
137 rdf:type schema:Organization
138 https://www.grid.ac/institutes/grid.412785.d schema:alternateName Tokyo University of Marine Science and Technology
139 schema:name Department of Marine Biosciences, Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, 108-8477, Tokyo, Japan
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...