A Unified Bayesian Framework for Bi-overlapping-Clustering Multi-omics Data via Sparse Matrix Factorization View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-07-08

AUTHORS

Fangting Zhou, Kejun He, James J. Cai, Laurie A. Davidson, Robert S. Chapkin, Yang Ni

ABSTRACT

The advances of modern sequencing techniques have generated an unprecedented amount of multi-omics data which provide great opportunities to quantitatively explore functional genomes from different but complementary perspectives. However, distinct modalities/sequencing technologies generate diverse types of data which greatly complicate statistical modeling because uniquely optimized methods are required for handling each type of data. In this paper, we propose a unified framework for Bayesian nonparametric matrix factorization that infers overlapping bi-clusters for multi-omics data. The proposed method adaptively discretizes different types of observations into common latent states on which cluster structures are built hierarchically. The proposed Bayesian nonparametric method is able to automatically determine the number of clusters. We demonstrate the utility of the proposed method using simulation studies and applications to a single-cell RNA-sequencing dataset, a combination of single-cell RNA-sequencing and single-cell ATAC-sequencing dataset, a bulk RNA-sequencing dataset, and a DNA methylation dataset which reveal several interesting findings that are consistent with biological literature. More... »

PAGES

1-23

References to SciGraph publications

  • 2006-07-23. The EphB4 receptor suppresses breast cancer cell tumorigenicity through an Abl–Crk pathway in NATURE CELL BIOLOGY
  • 2015-10-22. Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression in NATURE COMMUNICATIONS
  • 2009-09-02. Binary matrix factorization for analyzing gene expression data in DATA MINING AND KNOWLEDGE DISCOVERY
  • 2012-02-06. CBL enhances breast tumor formation by inhibiting tumor suppressive activity of TGF-β signaling in ONCOGENE
  • 2010-01-29. The role of MAP kinases and MAP kinase phosphatase-1 in resistance to breast cancer treatment in CANCER AND METASTASIS REVIEWS
  • 1998-03. Dendritic cells and the control of immunity in NATURE
  • 2016-04-05. Cellular localization of guanylin and uroguanylin mRNAs in human and rat duodenal and colonic mucosa in CELL AND TISSUE RESEARCH
  • 1983-03. Tumor heterogeneity: biological implications and therapeutic consequences in CANCER AND METASTASIS REVIEWS
  • 2019-01-07. Challenges in unsupervised clustering of single-cell RNA-seq data in NATURE REVIEWS GENETICS
  • 1999-10. Learning the parts of objects by non-negative matrix factorization in NATURE
  • 2007-07-04. TRPM5, a taste-signaling transient receptor potential ion-channel, is a ubiquitous signaling component in chemosensory cells in BMC NEUROSCIENCE
  • 2000-06-01. Tyrosine kinase signalling in breast cancer: ErbB family receptor tyrosine kinases in BREAST CANCER RESEARCH
  • 2016-11-10. Rapidly cycling Lgr5+ stem cells are exquisitely sensitive to extrinsic dietary factors that modulate colon cancer risk in CELL DEATH & DISEASE
  • 1967-09. Hierarchical clustering schemes in PSYCHOMETRIKA
  • 2015. Bayesian Nonparametric Data Analysis in NONE
  • 2011-07-09. Role of DNA methylation in head and neck cancer in CLINICAL EPIGENETICS
  • 2015-06-17. Single-cell chromatin accessibility reveals principles of regulatory variation in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12561-022-09350-w

    DOI

    http://dx.doi.org/10.1007/s12561-022-09350-w

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1149336261


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Statistics, Texas A&M University, College Station, USA", 
              "id": "http://www.grid.ac/institutes/grid.264756.4", 
              "name": [
                "Institute of Statistics and Big Data, Renmin University of China, Beijing, China", 
                "Department of Statistics, Texas A&M University, College Station, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhou", 
            "givenName": "Fangting", 
            "id": "sg:person.07545240237.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07545240237.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Statistics and Big Data, Renmin University of China, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.24539.39", 
              "name": [
                "Institute of Statistics and Big Data, Renmin University of China, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "He", 
            "givenName": "Kejun", 
            "id": "sg:person.011261134331.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011261134331.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, USA", 
              "id": "http://www.grid.ac/institutes/grid.264756.4", 
              "name": [
                "Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cai", 
            "givenName": "James J.", 
            "id": "sg:person.0673073472.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673073472.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Program in Integrative Nutrition and Complex Diseases, Texas A &M University, College Station, USA", 
              "id": "http://www.grid.ac/institutes/grid.264756.4", 
              "name": [
                "Department of Nutrition and Food Science, Texas A&M University, College Station, USA", 
                "Program in Integrative Nutrition and Complex Diseases, Texas A &M University, College Station, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Davidson", 
            "givenName": "Laurie A.", 
            "id": "sg:person.0733705225.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733705225.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Program in Integrative Nutrition and Complex Diseases, Texas A &M University, College Station, USA", 
              "id": "http://www.grid.ac/institutes/grid.264756.4", 
              "name": [
                "Department of Nutrition and Food Science, Texas A&M University, College Station, USA", 
                "Program in Integrative Nutrition and Complex Diseases, Texas A &M University, College Station, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chapkin", 
            "givenName": "Robert S.", 
            "id": "sg:person.01306422263.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306422263.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Statistics, Texas A&M University, College Station, USA", 
              "id": "http://www.grid.ac/institutes/grid.264756.4", 
              "name": [
                "Department of Statistics, Texas A&M University, College Station, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ni", 
            "givenName": "Yang", 
            "id": "sg:person.01240567310.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240567310.02"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/44565", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052721759", 
              "https://doi.org/10.1038/44565"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncb1438", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017034137", 
              "https://doi.org/10.1038/ncb1438"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-18968-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040661226", 
              "https://doi.org/10.1007/978-3-319-18968-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02289588", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041776510", 
              "https://doi.org/10.1007/bf02289588"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00441-016-2393-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012241309", 
              "https://doi.org/10.1007/s00441-016-2393-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/cddis.2016.269", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041047948", 
              "https://doi.org/10.1038/cddis.2016.269"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/bcr51", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015351106", 
              "https://doi.org/10.1186/bcr51"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00046903", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046314146", 
              "https://doi.org/10.1007/bf00046903"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41576-018-0088-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111223611", 
              "https://doi.org/10.1038/s41576-018-0088-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/onc.2012.18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053355789", 
              "https://doi.org/10.1038/onc.2012.18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/32588", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048341608", 
              "https://doi.org/10.1038/32588"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14590", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051474676", 
              "https://doi.org/10.1038/nature14590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13148-011-0045-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013408928", 
              "https://doi.org/10.1007/s13148-011-0045-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2202-8-49", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053674724", 
              "https://doi.org/10.1186/1471-2202-8-49"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10555-010-9208-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037580933", 
              "https://doi.org/10.1007/s10555-010-9208-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms9687", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046177375", 
              "https://doi.org/10.1038/ncomms9687"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10618-009-0145-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000066959", 
              "https://doi.org/10.1007/s10618-009-0145-2"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-07-08", 
        "datePublishedReg": "2022-07-08", 
        "description": "The advances of modern sequencing techniques have generated an unprecedented amount of multi-omics data which provide great opportunities to quantitatively explore functional genomes from different but complementary perspectives. However, distinct modalities/sequencing technologies generate diverse types of data which greatly complicate statistical modeling because uniquely optimized methods are required for handling each type of data. In this paper, we propose a unified framework for Bayesian nonparametric matrix factorization that infers overlapping bi-clusters for multi-omics data. The proposed method adaptively discretizes different types of observations into common latent states on which cluster structures are built hierarchically. The proposed Bayesian nonparametric method is able to automatically determine the number of clusters. We demonstrate the utility of the proposed method using simulation studies and applications to a single-cell RNA-sequencing dataset, a combination of single-cell RNA-sequencing and single-cell ATAC-sequencing dataset, a bulk RNA-sequencing dataset, and a DNA methylation dataset which reveal several interesting findings that are consistent with biological literature.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s12561-022-09350-w", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8892645", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6376235", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5243952", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5477036", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8523985", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.9705522", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4898148", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1041137", 
            "issn": [
              "1867-1764", 
              "1867-1772"
            ], 
            "name": "Statistics in Biosciences", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }
        ], 
        "keywords": [
          "RNA-sequencing datasets", 
          "multi-omics data", 
          "single-cell RNA-sequencing datasets", 
          "single-cell ATAC", 
          "Bayesian nonparametric method", 
          "unified Bayesian framework", 
          "modern sequencing techniques", 
          "DNA methylation datasets", 
          "sparse matrix factorization", 
          "number of clusters", 
          "functional genome", 
          "statistical modeling", 
          "Bayesian framework", 
          "matrix factorization", 
          "methylation datasets", 
          "sequencing techniques", 
          "unified framework", 
          "simulation study", 
          "nonparametric methods", 
          "cluster structure", 
          "biological literature", 
          "factorization", 
          "types of data", 
          "genome", 
          "diverse types", 
          "unprecedented amount", 
          "ATAC", 
          "latent state", 
          "framework", 
          "modeling", 
          "dataset", 
          "Multi", 
          "types", 
          "different types", 
          "applications", 
          "clusters", 
          "data", 
          "complementary perspectives", 
          "technique", 
          "great opportunity", 
          "advances", 
          "number", 
          "structure", 
          "state", 
          "interesting finding", 
          "observations", 
          "infers", 
          "combination", 
          "amount", 
          "findings", 
          "study", 
          "literature", 
          "utility", 
          "opportunities", 
          "method", 
          "technology", 
          "perspective", 
          "paper"
        ], 
        "name": "A Unified Bayesian Framework for Bi-overlapping-Clustering Multi-omics Data via Sparse Matrix Factorization", 
        "pagination": "1-23", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1149336261"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12561-022-09350-w"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12561-022-09350-w", 
          "https://app.dimensions.ai/details/publication/pub.1149336261"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_946.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s12561-022-09350-w"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12561-022-09350-w'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12561-022-09350-w'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12561-022-09350-w'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12561-022-09350-w'


     

    This table displays all metadata directly associated to this object as RDF triples.

    243 TRIPLES      21 PREDICATES      99 URIs      72 LITERALS      4 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12561-022-09350-w schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 anzsrc-for:06
    4 anzsrc-for:0604
    5 schema:author Nc261c8cf317d414584c94ea698bb75bb
    6 schema:citation sg:pub.10.1007/978-3-319-18968-0
    7 sg:pub.10.1007/bf00046903
    8 sg:pub.10.1007/bf02289588
    9 sg:pub.10.1007/s00441-016-2393-y
    10 sg:pub.10.1007/s10555-010-9208-5
    11 sg:pub.10.1007/s10618-009-0145-2
    12 sg:pub.10.1007/s13148-011-0045-3
    13 sg:pub.10.1038/32588
    14 sg:pub.10.1038/44565
    15 sg:pub.10.1038/cddis.2016.269
    16 sg:pub.10.1038/nature14590
    17 sg:pub.10.1038/ncb1438
    18 sg:pub.10.1038/ncomms9687
    19 sg:pub.10.1038/onc.2012.18
    20 sg:pub.10.1038/s41576-018-0088-9
    21 sg:pub.10.1186/1471-2202-8-49
    22 sg:pub.10.1186/bcr51
    23 schema:datePublished 2022-07-08
    24 schema:datePublishedReg 2022-07-08
    25 schema:description The advances of modern sequencing techniques have generated an unprecedented amount of multi-omics data which provide great opportunities to quantitatively explore functional genomes from different but complementary perspectives. However, distinct modalities/sequencing technologies generate diverse types of data which greatly complicate statistical modeling because uniquely optimized methods are required for handling each type of data. In this paper, we propose a unified framework for Bayesian nonparametric matrix factorization that infers overlapping bi-clusters for multi-omics data. The proposed method adaptively discretizes different types of observations into common latent states on which cluster structures are built hierarchically. The proposed Bayesian nonparametric method is able to automatically determine the number of clusters. We demonstrate the utility of the proposed method using simulation studies and applications to a single-cell RNA-sequencing dataset, a combination of single-cell RNA-sequencing and single-cell ATAC-sequencing dataset, a bulk RNA-sequencing dataset, and a DNA methylation dataset which reveal several interesting findings that are consistent with biological literature.
    26 schema:genre article
    27 schema:isAccessibleForFree false
    28 schema:isPartOf sg:journal.1041137
    29 schema:keywords ATAC
    30 Bayesian framework
    31 Bayesian nonparametric method
    32 DNA methylation datasets
    33 Multi
    34 RNA-sequencing datasets
    35 advances
    36 amount
    37 applications
    38 biological literature
    39 cluster structure
    40 clusters
    41 combination
    42 complementary perspectives
    43 data
    44 dataset
    45 different types
    46 diverse types
    47 factorization
    48 findings
    49 framework
    50 functional genome
    51 genome
    52 great opportunity
    53 infers
    54 interesting finding
    55 latent state
    56 literature
    57 matrix factorization
    58 method
    59 methylation datasets
    60 modeling
    61 modern sequencing techniques
    62 multi-omics data
    63 nonparametric methods
    64 number
    65 number of clusters
    66 observations
    67 opportunities
    68 paper
    69 perspective
    70 sequencing techniques
    71 simulation study
    72 single-cell ATAC
    73 single-cell RNA-sequencing datasets
    74 sparse matrix factorization
    75 state
    76 statistical modeling
    77 structure
    78 study
    79 technique
    80 technology
    81 types
    82 types of data
    83 unified Bayesian framework
    84 unified framework
    85 unprecedented amount
    86 utility
    87 schema:name A Unified Bayesian Framework for Bi-overlapping-Clustering Multi-omics Data via Sparse Matrix Factorization
    88 schema:pagination 1-23
    89 schema:productId N0e078d5161684c9497d5eda2653cd9b0
    90 Nd804b6b344f34943a49589c9a785a1e6
    91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149336261
    92 https://doi.org/10.1007/s12561-022-09350-w
    93 schema:sdDatePublished 2022-09-02T16:07
    94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    95 schema:sdPublisher Nd71cf4976c29429ebdeacb62efc131a2
    96 schema:url https://doi.org/10.1007/s12561-022-09350-w
    97 sgo:license sg:explorer/license/
    98 sgo:sdDataset articles
    99 rdf:type schema:ScholarlyArticle
    100 N02e8f9e3f1a94d71afabcf4dde4c45bd rdf:first sg:person.0733705225.12
    101 rdf:rest N664a295c78a642e6854abae4f21074cd
    102 N0e078d5161684c9497d5eda2653cd9b0 schema:name doi
    103 schema:value 10.1007/s12561-022-09350-w
    104 rdf:type schema:PropertyValue
    105 N3d1e3a7e72064ca8992e36e45c2c8e04 rdf:first sg:person.01240567310.02
    106 rdf:rest rdf:nil
    107 N664a295c78a642e6854abae4f21074cd rdf:first sg:person.01306422263.88
    108 rdf:rest N3d1e3a7e72064ca8992e36e45c2c8e04
    109 Nb7a1a2bd119e44a2b9d72693223a4bcf rdf:first sg:person.011261134331.53
    110 rdf:rest Ne0df6571010d4ba895e6952ee2f17994
    111 Nc261c8cf317d414584c94ea698bb75bb rdf:first sg:person.07545240237.21
    112 rdf:rest Nb7a1a2bd119e44a2b9d72693223a4bcf
    113 Nd71cf4976c29429ebdeacb62efc131a2 schema:name Springer Nature - SN SciGraph project
    114 rdf:type schema:Organization
    115 Nd804b6b344f34943a49589c9a785a1e6 schema:name dimensions_id
    116 schema:value pub.1149336261
    117 rdf:type schema:PropertyValue
    118 Ne0df6571010d4ba895e6952ee2f17994 rdf:first sg:person.0673073472.23
    119 rdf:rest N02e8f9e3f1a94d71afabcf4dde4c45bd
    120 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    121 schema:name Mathematical Sciences
    122 rdf:type schema:DefinedTerm
    123 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    124 schema:name Statistics
    125 rdf:type schema:DefinedTerm
    126 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    127 schema:name Biological Sciences
    128 rdf:type schema:DefinedTerm
    129 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    130 schema:name Genetics
    131 rdf:type schema:DefinedTerm
    132 sg:grant.4898148 http://pending.schema.org/fundedItem sg:pub.10.1007/s12561-022-09350-w
    133 rdf:type schema:MonetaryGrant
    134 sg:grant.5243952 http://pending.schema.org/fundedItem sg:pub.10.1007/s12561-022-09350-w
    135 rdf:type schema:MonetaryGrant
    136 sg:grant.5477036 http://pending.schema.org/fundedItem sg:pub.10.1007/s12561-022-09350-w
    137 rdf:type schema:MonetaryGrant
    138 sg:grant.6376235 http://pending.schema.org/fundedItem sg:pub.10.1007/s12561-022-09350-w
    139 rdf:type schema:MonetaryGrant
    140 sg:grant.8523985 http://pending.schema.org/fundedItem sg:pub.10.1007/s12561-022-09350-w
    141 rdf:type schema:MonetaryGrant
    142 sg:grant.8892645 http://pending.schema.org/fundedItem sg:pub.10.1007/s12561-022-09350-w
    143 rdf:type schema:MonetaryGrant
    144 sg:grant.9705522 http://pending.schema.org/fundedItem sg:pub.10.1007/s12561-022-09350-w
    145 rdf:type schema:MonetaryGrant
    146 sg:journal.1041137 schema:issn 1867-1764
    147 1867-1772
    148 schema:name Statistics in Biosciences
    149 schema:publisher Springer Nature
    150 rdf:type schema:Periodical
    151 sg:person.011261134331.53 schema:affiliation grid-institutes:grid.24539.39
    152 schema:familyName He
    153 schema:givenName Kejun
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011261134331.53
    155 rdf:type schema:Person
    156 sg:person.01240567310.02 schema:affiliation grid-institutes:grid.264756.4
    157 schema:familyName Ni
    158 schema:givenName Yang
    159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240567310.02
    160 rdf:type schema:Person
    161 sg:person.01306422263.88 schema:affiliation grid-institutes:grid.264756.4
    162 schema:familyName Chapkin
    163 schema:givenName Robert S.
    164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306422263.88
    165 rdf:type schema:Person
    166 sg:person.0673073472.23 schema:affiliation grid-institutes:grid.264756.4
    167 schema:familyName Cai
    168 schema:givenName James J.
    169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673073472.23
    170 rdf:type schema:Person
    171 sg:person.0733705225.12 schema:affiliation grid-institutes:grid.264756.4
    172 schema:familyName Davidson
    173 schema:givenName Laurie A.
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733705225.12
    175 rdf:type schema:Person
    176 sg:person.07545240237.21 schema:affiliation grid-institutes:grid.264756.4
    177 schema:familyName Zhou
    178 schema:givenName Fangting
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07545240237.21
    180 rdf:type schema:Person
    181 sg:pub.10.1007/978-3-319-18968-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040661226
    182 https://doi.org/10.1007/978-3-319-18968-0
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/bf00046903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046314146
    185 https://doi.org/10.1007/bf00046903
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/bf02289588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041776510
    188 https://doi.org/10.1007/bf02289588
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/s00441-016-2393-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1012241309
    191 https://doi.org/10.1007/s00441-016-2393-y
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/s10555-010-9208-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037580933
    194 https://doi.org/10.1007/s10555-010-9208-5
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/s10618-009-0145-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000066959
    197 https://doi.org/10.1007/s10618-009-0145-2
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/s13148-011-0045-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013408928
    200 https://doi.org/10.1007/s13148-011-0045-3
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/32588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048341608
    203 https://doi.org/10.1038/32588
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/44565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052721759
    206 https://doi.org/10.1038/44565
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1038/cddis.2016.269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041047948
    209 https://doi.org/10.1038/cddis.2016.269
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/nature14590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051474676
    212 https://doi.org/10.1038/nature14590
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/ncb1438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017034137
    215 https://doi.org/10.1038/ncb1438
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/ncomms9687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046177375
    218 https://doi.org/10.1038/ncomms9687
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/onc.2012.18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053355789
    221 https://doi.org/10.1038/onc.2012.18
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/s41576-018-0088-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111223611
    224 https://doi.org/10.1038/s41576-018-0088-9
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1186/1471-2202-8-49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053674724
    227 https://doi.org/10.1186/1471-2202-8-49
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1186/bcr51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015351106
    230 https://doi.org/10.1186/bcr51
    231 rdf:type schema:CreativeWork
    232 grid-institutes:grid.24539.39 schema:alternateName Institute of Statistics and Big Data, Renmin University of China, Beijing, China
    233 schema:name Institute of Statistics and Big Data, Renmin University of China, Beijing, China
    234 rdf:type schema:Organization
    235 grid-institutes:grid.264756.4 schema:alternateName Department of Statistics, Texas A&M University, College Station, USA
    236 Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, USA
    237 Program in Integrative Nutrition and Complex Diseases, Texas A &M University, College Station, USA
    238 schema:name Department of Nutrition and Food Science, Texas A&M University, College Station, USA
    239 Department of Statistics, Texas A&M University, College Station, USA
    240 Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, USA
    241 Institute of Statistics and Big Data, Renmin University of China, Beijing, China
    242 Program in Integrative Nutrition and Complex Diseases, Texas A &M University, College Station, USA
    243 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...