Bayesian Sensitivity Analysis for Non-ignorable Missing Data in Longitudinal Studies View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-21

AUTHORS

Tian Li, Julian M. Somers, Xiaoqiong J. Hu, Lawrence C. McCandless

ABSTRACT

The use of Bayesian statistical methods to handle missing data in biomedical studies has become popular in recent years. In this paper, we propose a novel Bayesian sensitivity analysis (BSA) technique that accounts for the influences of missing outcome data on the estimation of treatment effects in longitudinal studies with non-ignorable missing data. The approach uses a pattern-mixture model for the complete data, which is indexed by non-identifiable sensitivity parameters that accounts for the effect of missingness on the observations. We implement the method using the probabilistic programming language Stan, and apply it to data from the Vancouver At Home Study, which is a randomized control trial that provided housing to homeless people with mental illness. We compare the results of BSA to those from an existing Bayesian longitudinal model that ignores the missing data mechanism in the outcome. Furthermore, we demonstrate in a simulation study that when we use a diffuse conservative prior that describes a range of assumptions about the non-ignorable missingness, then BSA credible intervals have greater length and higher coverage rate of the target parameters than existing methods. More... »

PAGES

1-22

Journal

TITLE

Statistics in Biosciences

ISSUE

N/A

VOLUME

N/A

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12561-019-09234-6

DOI

http://dx.doi.org/10.1007/s12561-019-09234-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112919028


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Simon Fraser University", 
          "id": "https://www.grid.ac/institutes/grid.61971.38", 
          "name": [
            "Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Tian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Simon Fraser University", 
          "id": "https://www.grid.ac/institutes/grid.61971.38", 
          "name": [
            "Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, V5A 1S6, Burnaby, BC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Somers", 
        "givenName": "Julian M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Simon Fraser University", 
          "id": "https://www.grid.ac/institutes/grid.61971.38", 
          "name": [
            "Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Xiaoqiong J.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Simon Fraser University", 
          "id": "https://www.grid.ac/institutes/grid.61971.38", 
          "name": [
            "Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, Canada", 
            "Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, V5A 1S6, Burnaby, BC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McCandless", 
        "givenName": "Lawrence C.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/sim.2711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004102578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0258(19970215)16:3<239::aid-sim483>3.0.co;2-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004104265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1745-6215-14-365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004233739", 
          "https://doi.org/10.1186/1745-6215-14-365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9868.00170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006920845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00127-013-0719-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006952169", 
          "https://doi.org/10.1007/s00127-013-0719-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1541-0420.2011.01565.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007983035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/1.2.141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010776356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10705510802339072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010940860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.3655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017116314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.3655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017116314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1439-0388.2008.00773.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018272664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2008.07.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025135260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/4.4.495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026885750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0962280206074463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027897548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0962280206074463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027897548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9876.2008.00628.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033142145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0258(19970115)16:1<21::aid-sim470>3.0.co;2-f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033237340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.ede.0000135174.63482.43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045631895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.ede.0000135174.63482.43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045631895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.4780070131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048775391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0149-7189(98)00039-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048859076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.6302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053222795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmjopen-2011-000323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053713656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1977.10480610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058301839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1996.10476908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058305042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1999.10473862", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058305544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10635150290102429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058369294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/63.3.581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059418581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214502760046934", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064197999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214505000001221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/09-sts305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064391135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v045.i03", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470510445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470510445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661386"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-21", 
    "datePublishedReg": "2019-03-21", 
    "description": "The use of Bayesian statistical methods to handle missing data in biomedical studies has become popular in recent years. In this paper, we propose a novel Bayesian sensitivity analysis (BSA) technique that accounts for the influences of missing outcome data on the estimation of treatment effects in longitudinal studies with non-ignorable missing data. The approach uses a pattern-mixture model for the complete data, which is indexed by non-identifiable sensitivity parameters that accounts for the effect of missingness on the observations. We implement the method using the probabilistic programming language Stan, and apply it to data from the Vancouver At Home Study, which is a randomized control trial that provided housing to homeless people with mental illness. We compare the results of BSA to those from an existing Bayesian longitudinal model that ignores the missing data mechanism in the outcome. Furthermore, we demonstrate in a simulation study that when we use a diffuse conservative prior that describes a range of assumptions about the non-ignorable missingness, then BSA credible intervals have greater length and higher coverage rate of the target parameters than existing methods.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12561-019-09234-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041137", 
        "issn": [
          "1867-1764", 
          "1867-1772"
        ], 
        "name": "Statistics in Biosciences", 
        "type": "Periodical"
      }
    ], 
    "name": "Bayesian Sensitivity Analysis for Non-ignorable Missing Data in Longitudinal Studies", 
    "pagination": "1-22", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ad67a81e89f51038c3782ffaefa9fb682e8435d60c1768b2cbc63653f3813048"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12561-019-09234-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112919028"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12561-019-09234-6", 
      "https://app.dimensions.ai/details/publication/pub.1112919028"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72862_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12561-019-09234-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12561-019-09234-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12561-019-09234-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12561-019-09234-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12561-019-09234-6'


 

This table displays all metadata directly associated to this object as RDF triples.

165 TRIPLES      21 PREDICATES      54 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12561-019-09234-6 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N5c2580164a4e47fc941687943b437068
4 schema:citation sg:pub.10.1007/s00127-013-0719-6
5 sg:pub.10.1186/1745-6215-14-365
6 https://doi.org/10.1002/(sici)1097-0258(19970115)16:1<21::aid-sim470>3.0.co;2-f
7 https://doi.org/10.1002/(sici)1097-0258(19970215)16:3<239::aid-sim483>3.0.co;2-x
8 https://doi.org/10.1002/9780470510445
9 https://doi.org/10.1002/sim.2711
10 https://doi.org/10.1002/sim.3655
11 https://doi.org/10.1002/sim.4780070131
12 https://doi.org/10.1002/sim.6302
13 https://doi.org/10.1016/j.csda.2008.07.042
14 https://doi.org/10.1016/s0149-7189(98)00039-1
15 https://doi.org/10.1080/01621459.1977.10480610
16 https://doi.org/10.1080/01621459.1996.10476908
17 https://doi.org/10.1080/01621459.1999.10473862
18 https://doi.org/10.1080/10635150290102429
19 https://doi.org/10.1080/10705510802339072
20 https://doi.org/10.1093/biomet/63.3.581
21 https://doi.org/10.1093/biostatistics/1.2.141
22 https://doi.org/10.1093/biostatistics/4.4.495
23 https://doi.org/10.1097/01.ede.0000135174.63482.43
24 https://doi.org/10.1111/1467-9868.00170
25 https://doi.org/10.1111/j.1439-0388.2008.00773.x
26 https://doi.org/10.1111/j.1467-9876.2008.00628.x
27 https://doi.org/10.1111/j.1541-0420.2011.01565.x
28 https://doi.org/10.1136/bmjopen-2011-000323
29 https://doi.org/10.1177/0962280206074463
30 https://doi.org/10.1198/016214502760046934
31 https://doi.org/10.1198/016214505000001221
32 https://doi.org/10.1214/09-sts305
33 https://doi.org/10.18637/jss.v045.i03
34 schema:datePublished 2019-03-21
35 schema:datePublishedReg 2019-03-21
36 schema:description The use of Bayesian statistical methods to handle missing data in biomedical studies has become popular in recent years. In this paper, we propose a novel Bayesian sensitivity analysis (BSA) technique that accounts for the influences of missing outcome data on the estimation of treatment effects in longitudinal studies with non-ignorable missing data. The approach uses a pattern-mixture model for the complete data, which is indexed by non-identifiable sensitivity parameters that accounts for the effect of missingness on the observations. We implement the method using the probabilistic programming language Stan, and apply it to data from the Vancouver At Home Study, which is a randomized control trial that provided housing to homeless people with mental illness. We compare the results of BSA to those from an existing Bayesian longitudinal model that ignores the missing data mechanism in the outcome. Furthermore, we demonstrate in a simulation study that when we use a diffuse conservative prior that describes a range of assumptions about the non-ignorable missingness, then BSA credible intervals have greater length and higher coverage rate of the target parameters than existing methods.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf sg:journal.1041137
41 schema:name Bayesian Sensitivity Analysis for Non-ignorable Missing Data in Longitudinal Studies
42 schema:pagination 1-22
43 schema:productId N2fe81c36198a47adaa4f891a92b42d2e
44 N409994a7eaec4e94840240410ed78c2c
45 N99f63d4bde1847e29c8c5e4d294728aa
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112919028
47 https://doi.org/10.1007/s12561-019-09234-6
48 schema:sdDatePublished 2019-04-11T12:54
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Naf042ad7d7c04f1c8bf219b61d7cafe2
51 schema:url https://link.springer.com/10.1007%2Fs12561-019-09234-6
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N06a0c46cbce048aba9ec9d693f9bfeb1 schema:affiliation https://www.grid.ac/institutes/grid.61971.38
56 schema:familyName McCandless
57 schema:givenName Lawrence C.
58 rdf:type schema:Person
59 N1a68241c028c4ea084c34395ef94ec5b rdf:first Nd30ff7a587a8465eb43841b288b3a903
60 rdf:rest N63b3955bd1d14a4d9395a9c7f52435e0
61 N2bbaf62852664a989e827773f1978ba0 schema:affiliation https://www.grid.ac/institutes/grid.61971.38
62 schema:familyName Li
63 schema:givenName Tian
64 rdf:type schema:Person
65 N2fe81c36198a47adaa4f891a92b42d2e schema:name doi
66 schema:value 10.1007/s12561-019-09234-6
67 rdf:type schema:PropertyValue
68 N409994a7eaec4e94840240410ed78c2c schema:name dimensions_id
69 schema:value pub.1112919028
70 rdf:type schema:PropertyValue
71 N5c2580164a4e47fc941687943b437068 rdf:first N2bbaf62852664a989e827773f1978ba0
72 rdf:rest N1a68241c028c4ea084c34395ef94ec5b
73 N5f35663214814f2a9f6f43cd49536738 rdf:first N06a0c46cbce048aba9ec9d693f9bfeb1
74 rdf:rest rdf:nil
75 N63b3955bd1d14a4d9395a9c7f52435e0 rdf:first N9978609e589243b39c964977df45a541
76 rdf:rest N5f35663214814f2a9f6f43cd49536738
77 N9978609e589243b39c964977df45a541 schema:affiliation https://www.grid.ac/institutes/grid.61971.38
78 schema:familyName Hu
79 schema:givenName Xiaoqiong J.
80 rdf:type schema:Person
81 N99f63d4bde1847e29c8c5e4d294728aa schema:name readcube_id
82 schema:value ad67a81e89f51038c3782ffaefa9fb682e8435d60c1768b2cbc63653f3813048
83 rdf:type schema:PropertyValue
84 Naf042ad7d7c04f1c8bf219b61d7cafe2 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 Nd30ff7a587a8465eb43841b288b3a903 schema:affiliation https://www.grid.ac/institutes/grid.61971.38
87 schema:familyName Somers
88 schema:givenName Julian M.
89 rdf:type schema:Person
90 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
91 schema:name Mathematical Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
94 schema:name Statistics
95 rdf:type schema:DefinedTerm
96 sg:journal.1041137 schema:issn 1867-1764
97 1867-1772
98 schema:name Statistics in Biosciences
99 rdf:type schema:Periodical
100 sg:pub.10.1007/s00127-013-0719-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006952169
101 https://doi.org/10.1007/s00127-013-0719-6
102 rdf:type schema:CreativeWork
103 sg:pub.10.1186/1745-6215-14-365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004233739
104 https://doi.org/10.1186/1745-6215-14-365
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1002/(sici)1097-0258(19970115)16:1<21::aid-sim470>3.0.co;2-f schema:sameAs https://app.dimensions.ai/details/publication/pub.1033237340
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1002/(sici)1097-0258(19970215)16:3<239::aid-sim483>3.0.co;2-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004104265
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1002/9780470510445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661386
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1002/sim.2711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004102578
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1002/sim.3655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017116314
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1002/sim.4780070131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048775391
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1002/sim.6302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053222795
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.csda.2008.07.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025135260
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/s0149-7189(98)00039-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048859076
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1080/01621459.1977.10480610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058301839
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1080/01621459.1996.10476908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058305042
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1080/01621459.1999.10473862 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058305544
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1080/10635150290102429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058369294
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1080/10705510802339072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010940860
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1093/biomet/63.3.581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059418581
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1093/biostatistics/1.2.141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010776356
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1093/biostatistics/4.4.495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026885750
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1097/01.ede.0000135174.63482.43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045631895
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1111/1467-9868.00170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006920845
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1111/j.1439-0388.2008.00773.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018272664
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1111/j.1467-9876.2008.00628.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033142145
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1111/j.1541-0420.2011.01565.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007983035
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1136/bmjopen-2011-000323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053713656
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1177/0962280206074463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027897548
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1198/016214502760046934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064197999
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1198/016214505000001221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198453
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1214/09-sts305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064391135
159 rdf:type schema:CreativeWork
160 https://doi.org/10.18637/jss.v045.i03 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672674
161 rdf:type schema:CreativeWork
162 https://www.grid.ac/institutes/grid.61971.38 schema:alternateName Simon Fraser University
163 schema:name Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, Canada
164 Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, V5A 1S6, Burnaby, BC, Canada
165 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...