An Efficient Nonparametric Estimate for Spatially Correlated Functional Data View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-06

AUTHORS

Yuan Wang, Jianhua Hu, Kim-Anh Do, Brian P. Hobbs

ABSTRACT

Functional data are often generated by modern biomedical technologies where features related to the pathophysiology and pathogenesis of a disease are interrogated repeatedly over time and at multiple spatially interdependent regions. To reduce model complexity and simplify the resulting inference, possible spatial correlation among neighboring regions is often neglected. In this article, we propose a weighted kernel smoothing estimate of the mean function that leverages the spatial and temporal correlation. We also address the companion problem of developing a simultaneous prediction method for individual curves using discrete samples. We establish the asymptotic properties of the proposed estimate, including its unique maximum efficiency achieving minimum asymptotic variance. The proposed method improves estimation and prediction in the presence of sparse observations, and therefore, is advantageous to biomedical applications that utilize markers to identify features intrinsic to a particular disease at multiple interdependent sites within an organ. Our simulation and case studies show that the proposed method outperforms conventional approaches for characterizing the dynamic functional imaging data, with the maximum benefit achieved in the presence of a small number of repeated scans. More... »

PAGES

1-22

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12561-019-09233-7

DOI

http://dx.doi.org/10.1007/s12561-019-09233-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112587696


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Washington State University", 
          "id": "https://www.grid.ac/institutes/grid.30064.31", 
          "name": [
            "Washington State University, Pullman, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yuan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Columbia University", 
          "id": "https://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Columbia University, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Jianhua", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "The University of Texas MD Anderson Cancer Center, Houston, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Do", 
        "givenName": "Kim-Anh", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cleveland Clinic", 
          "id": "https://www.grid.ac/institutes/grid.239578.2", 
          "name": [
            "Cleveland Clinic, Cleveland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hobbs", 
        "givenName": "Brian P.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s1076-6332(00)80632-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003328749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1541-0420.2012.01808.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006744060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-7799(02)02035-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007122318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/kxp058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008661954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/kxp058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008661954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1541-0420.2007.00846.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015122143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0959-8049(02)00386-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015667163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0959-8049(02)00386-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015667163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/biom.12304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015669007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sta4.89", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020662239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0006-341x.2002.00121.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033309882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.13122708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045073433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2006.00539.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049776309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2006.00539.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049776309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.2000.10474229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058305723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.2012.734196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058305989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.2015.1042581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058306394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/53/16/003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059027222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/asn035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059421679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214504000001745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214504000001745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/jasa.2010.tm08737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064200583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/009053607000000082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064389036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/009053607000000082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064389036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/11-ejs662", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064392611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5705/ss.2009.207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073080234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1991.tb01821.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110458676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1991.tb01821.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110458676"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-06", 
    "datePublishedReg": "2019-03-06", 
    "description": "Functional data are often generated by modern biomedical technologies where features related to the pathophysiology and pathogenesis of a disease are interrogated repeatedly over time and at multiple spatially interdependent regions. To reduce model complexity and simplify the resulting inference, possible spatial correlation among neighboring regions is often neglected. In this article, we propose a weighted kernel smoothing estimate of the mean function that leverages the spatial and temporal correlation. We also address the companion problem of developing a simultaneous prediction method for individual curves using discrete samples. We establish the asymptotic properties of the proposed estimate, including its unique maximum efficiency achieving minimum asymptotic variance. The proposed method improves estimation and prediction in the presence of sparse observations, and therefore, is advantageous to biomedical applications that utilize markers to identify features intrinsic to a particular disease at multiple interdependent sites within an organ. Our simulation and case studies show that the proposed method outperforms conventional approaches for characterizing the dynamic functional imaging data, with the maximum benefit achieved in the presence of a small number of repeated scans.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12561-019-09233-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2440238", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7051594", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7051729", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2705229", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2696296", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2438802", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2438826", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1041137", 
        "issn": [
          "1867-1764", 
          "1867-1772"
        ], 
        "name": "Statistics in Biosciences", 
        "type": "Periodical"
      }
    ], 
    "name": "An Efficient Nonparametric Estimate for Spatially Correlated Functional Data", 
    "pagination": "1-22", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1d6e097d1db9dd0ce3ffe5f461f99dec8c69e2c5a5cf608fb2c2fcd49a8ccd0a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12561-019-09233-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112587696"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12561-019-09233-7", 
      "https://app.dimensions.ai/details/publication/pub.1112587696"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000353_0000000353/records_45372_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12561-019-09233-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12561-019-09233-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12561-019-09233-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12561-019-09233-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12561-019-09233-7'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      21 PREDICATES      46 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12561-019-09233-7 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N585177b2f19c43a7bab0edb92d4fd3fe
4 schema:citation https://doi.org/10.1002/sta4.89
5 https://doi.org/10.1016/s0167-7799(02)02035-8
6 https://doi.org/10.1016/s0959-8049(02)00386-6
7 https://doi.org/10.1016/s1076-6332(00)80632-7
8 https://doi.org/10.1080/01621459.2000.10474229
9 https://doi.org/10.1080/01621459.2012.734196
10 https://doi.org/10.1080/01621459.2015.1042581
11 https://doi.org/10.1088/0031-9155/53/16/003
12 https://doi.org/10.1093/biomet/asn035
13 https://doi.org/10.1093/biostatistics/kxp058
14 https://doi.org/10.1111/biom.12304
15 https://doi.org/10.1111/j.0006-341x.2002.00121.x
16 https://doi.org/10.1111/j.1467-9868.2006.00539.x
17 https://doi.org/10.1111/j.1541-0420.2007.00846.x
18 https://doi.org/10.1111/j.1541-0420.2012.01808.x
19 https://doi.org/10.1111/j.2517-6161.1991.tb01821.x
20 https://doi.org/10.1148/radiol.13122708
21 https://doi.org/10.1198/016214504000001745
22 https://doi.org/10.1198/jasa.2010.tm08737
23 https://doi.org/10.1214/009053607000000082
24 https://doi.org/10.1214/11-ejs662
25 https://doi.org/10.5705/ss.2009.207
26 schema:datePublished 2019-03-06
27 schema:datePublishedReg 2019-03-06
28 schema:description Functional data are often generated by modern biomedical technologies where features related to the pathophysiology and pathogenesis of a disease are interrogated repeatedly over time and at multiple spatially interdependent regions. To reduce model complexity and simplify the resulting inference, possible spatial correlation among neighboring regions is often neglected. In this article, we propose a weighted kernel smoothing estimate of the mean function that leverages the spatial and temporal correlation. We also address the companion problem of developing a simultaneous prediction method for individual curves using discrete samples. We establish the asymptotic properties of the proposed estimate, including its unique maximum efficiency achieving minimum asymptotic variance. The proposed method improves estimation and prediction in the presence of sparse observations, and therefore, is advantageous to biomedical applications that utilize markers to identify features intrinsic to a particular disease at multiple interdependent sites within an organ. Our simulation and case studies show that the proposed method outperforms conventional approaches for characterizing the dynamic functional imaging data, with the maximum benefit achieved in the presence of a small number of repeated scans.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf sg:journal.1041137
33 schema:name An Efficient Nonparametric Estimate for Spatially Correlated Functional Data
34 schema:pagination 1-22
35 schema:productId N3837121449624273a9416fb592c19711
36 Nd0fe8adfbc504dd3bef349c7f3b53945
37 Nfae17d9c4cbf447fa03df74a3a126ec5
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112587696
39 https://doi.org/10.1007/s12561-019-09233-7
40 schema:sdDatePublished 2019-04-11T11:14
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher Nd28b08c74b0c4161b9b809f93ced2bba
43 schema:url https://link.springer.com/10.1007%2Fs12561-019-09233-7
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N13dcaeb706684501897d5c3985fb928f schema:affiliation https://www.grid.ac/institutes/grid.30064.31
48 schema:familyName Wang
49 schema:givenName Yuan
50 rdf:type schema:Person
51 N3837121449624273a9416fb592c19711 schema:name doi
52 schema:value 10.1007/s12561-019-09233-7
53 rdf:type schema:PropertyValue
54 N3a5183547627432396c6004fef791c81 rdf:first N620e0722986f4a4ca0bb79624fd07e27
55 rdf:rest Na41d585fa7b9410a865e274b824ed17f
56 N443aef3435ef40869fc17e08c2afc3ab rdf:first Ned5a9bd13d204626bec9a3ea96d99d59
57 rdf:rest N3a5183547627432396c6004fef791c81
58 N585177b2f19c43a7bab0edb92d4fd3fe rdf:first N13dcaeb706684501897d5c3985fb928f
59 rdf:rest N443aef3435ef40869fc17e08c2afc3ab
60 N620e0722986f4a4ca0bb79624fd07e27 schema:affiliation https://www.grid.ac/institutes/grid.240145.6
61 schema:familyName Do
62 schema:givenName Kim-Anh
63 rdf:type schema:Person
64 N9f1feea8144e4b1cb7615d18f1393d7d schema:affiliation https://www.grid.ac/institutes/grid.239578.2
65 schema:familyName Hobbs
66 schema:givenName Brian P.
67 rdf:type schema:Person
68 Na41d585fa7b9410a865e274b824ed17f rdf:first N9f1feea8144e4b1cb7615d18f1393d7d
69 rdf:rest rdf:nil
70 Nd0fe8adfbc504dd3bef349c7f3b53945 schema:name readcube_id
71 schema:value 1d6e097d1db9dd0ce3ffe5f461f99dec8c69e2c5a5cf608fb2c2fcd49a8ccd0a
72 rdf:type schema:PropertyValue
73 Nd28b08c74b0c4161b9b809f93ced2bba schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 Ned5a9bd13d204626bec9a3ea96d99d59 schema:affiliation https://www.grid.ac/institutes/grid.21729.3f
76 schema:familyName Hu
77 schema:givenName Jianhua
78 rdf:type schema:Person
79 Nfae17d9c4cbf447fa03df74a3a126ec5 schema:name dimensions_id
80 schema:value pub.1112587696
81 rdf:type schema:PropertyValue
82 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
83 schema:name Information and Computing Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
86 schema:name Artificial Intelligence and Image Processing
87 rdf:type schema:DefinedTerm
88 sg:grant.2438802 http://pending.schema.org/fundedItem sg:pub.10.1007/s12561-019-09233-7
89 rdf:type schema:MonetaryGrant
90 sg:grant.2438826 http://pending.schema.org/fundedItem sg:pub.10.1007/s12561-019-09233-7
91 rdf:type schema:MonetaryGrant
92 sg:grant.2440238 http://pending.schema.org/fundedItem sg:pub.10.1007/s12561-019-09233-7
93 rdf:type schema:MonetaryGrant
94 sg:grant.2696296 http://pending.schema.org/fundedItem sg:pub.10.1007/s12561-019-09233-7
95 rdf:type schema:MonetaryGrant
96 sg:grant.2705229 http://pending.schema.org/fundedItem sg:pub.10.1007/s12561-019-09233-7
97 rdf:type schema:MonetaryGrant
98 sg:grant.7051594 http://pending.schema.org/fundedItem sg:pub.10.1007/s12561-019-09233-7
99 rdf:type schema:MonetaryGrant
100 sg:grant.7051729 http://pending.schema.org/fundedItem sg:pub.10.1007/s12561-019-09233-7
101 rdf:type schema:MonetaryGrant
102 sg:journal.1041137 schema:issn 1867-1764
103 1867-1772
104 schema:name Statistics in Biosciences
105 rdf:type schema:Periodical
106 https://doi.org/10.1002/sta4.89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020662239
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/s0167-7799(02)02035-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007122318
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/s0959-8049(02)00386-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015667163
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/s1076-6332(00)80632-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003328749
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1080/01621459.2000.10474229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058305723
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1080/01621459.2012.734196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058305989
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1080/01621459.2015.1042581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058306394
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1088/0031-9155/53/16/003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059027222
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1093/biomet/asn035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059421679
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1093/biostatistics/kxp058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008661954
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1111/biom.12304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015669007
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1111/j.0006-341x.2002.00121.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033309882
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1111/j.1467-9868.2006.00539.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049776309
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1111/j.1541-0420.2007.00846.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015122143
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1111/j.1541-0420.2012.01808.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006744060
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1111/j.2517-6161.1991.tb01821.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1110458676
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1148/radiol.13122708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045073433
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1198/016214504000001745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198299
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1198/jasa.2010.tm08737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064200583
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1214/009053607000000082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064389036
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1214/11-ejs662 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064392611
147 rdf:type schema:CreativeWork
148 https://doi.org/10.5705/ss.2009.207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073080234
149 rdf:type schema:CreativeWork
150 https://www.grid.ac/institutes/grid.21729.3f schema:alternateName Columbia University
151 schema:name Columbia University, New York, USA
152 rdf:type schema:Organization
153 https://www.grid.ac/institutes/grid.239578.2 schema:alternateName Cleveland Clinic
154 schema:name Cleveland Clinic, Cleveland, USA
155 rdf:type schema:Organization
156 https://www.grid.ac/institutes/grid.240145.6 schema:alternateName The University of Texas MD Anderson Cancer Center
157 schema:name The University of Texas MD Anderson Cancer Center, Houston, USA
158 rdf:type schema:Organization
159 https://www.grid.ac/institutes/grid.30064.31 schema:alternateName Washington State University
160 schema:name Washington State University, Pullman, USA
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...