Clustering Functional Data with Application to Electronic Medication Adherence Monitoring in HIV Prevention Trials View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-12

AUTHORS

Yifan Zhu, Chongzhi Di, Ying Qing Chen

ABSTRACT

Maintaining high medication adherence is essential for achieving desired efficacy in clinical trials, especially prevention trials. However, adherence is traditionally measured by self-reports that are subject to reporting biases and measurement error. Recently, electronic medication dispenser devices have been adopted in several HIV pre-exposure prophylaxis prevention studies. These devices are capable of collecting objective, frequent, and timely drug adherence data. The device opening signals generated by such devices are often represented as regularly or irregularly spaced discrete functional data, which are challenging for statistical analysis. In this paper, we focus on clustering the adherence monitoring data from such devices. We first pre-process the raw discrete functional data into smoothed functional data. Parametric mixture models with change-points, as well as several non-parametric and semi-parametric functional clustering approaches, are adapted and applied to the smoothed adherence data. Simulation studies were conducted to evaluate finite sample performances, on the choices of tuning parameters in the pre-processing step as well as the relative performance of different clustering algorithms. We applied these methods to the HIV Prevention Trials Network 069 study for identifying subgroups with distinct adherence behavior over the study period. More... »

PAGES

1-24

References to SciGraph publications

  • 2010-12. Real-Time Adherence Monitoring for HIV Antiretroviral Therapy in AIDS AND BEHAVIOR
  • 2013-10. Nonsmooth optimization via quasi-Newton methods in MATHEMATICAL PROGRAMMING
  • 1985-12. Comparing partitions in JOURNAL OF CLASSIFICATION
  • 2014-09. Functional data clustering: a survey in ADVANCES IN DATA ANALYSIS AND CLASSIFICATION
  • Journal

    TITLE

    Statistics in Biosciences

    ISSUE

    N/A

    VOLUME

    N/A

    From Grant

  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12561-019-09232-8

    DOI

    http://dx.doi.org/10.1007/s12561-019-09232-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112092663


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "1100 Fairview Ave. N., Seattle, WA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhu", 
            "givenName": "Yifan", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "1100 Fairview Ave. N., Seattle, WA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Di", 
            "givenName": "Chongzhi", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "1100 Fairview Ave. N., Seattle, WA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Ying Qing", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11634-013-0158-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018942665", 
              "https://doi.org/10.1007/s11634-013-0158-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-9868.2007.00605.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019693550"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-9868.2008.00656.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021882608"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01908075", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022323983", 
              "https://doi.org/10.1007/bf01908075"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10107-012-0514-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022763272", 
              "https://doi.org/10.1007/s10107-012-0514-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/bmj.39553.670231.25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033560750"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/08-aoas172", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043491856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/009053605000000660", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044070258"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jps.2600580210", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044656283"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aos/1176344136", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044872629"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10461-010-9799-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046696795", 
              "https://doi.org/10.1007/s10461-010-9799-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10461-010-9799-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046696795", 
              "https://doi.org/10.1007/s10461-010-9799-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s002190020004376x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051923327"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1473-3099(14)70847-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053332881"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1963.10500845", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058299788"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1971.10482356", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058300829"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1995.10476572", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058304855"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.2014.957286", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058306295"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/infdis/jiw525", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059710467"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/pan/mpq025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059969110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tac.1974.1100705", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061471419"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1198/016214502760047131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064198019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1198/016214503000189", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064198108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1198/106186005x59243", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064199490"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/3214721", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070228873"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2346830", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101982469"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2346830", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101982469"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.2517-6161.1982.tb01203.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110458300"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.2517-6161.1982.tb01203.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110458300"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02-12", 
        "datePublishedReg": "2019-02-12", 
        "description": "Maintaining high medication adherence is essential for achieving desired efficacy in clinical trials, especially prevention trials. However, adherence is traditionally measured by self-reports that are subject to reporting biases and measurement error. Recently, electronic medication dispenser devices have been adopted in several HIV pre-exposure prophylaxis prevention studies. These devices are capable of collecting objective, frequent, and timely drug adherence data. The device opening signals generated by such devices are often represented as regularly or irregularly spaced discrete functional data, which are challenging for statistical analysis. In this paper, we focus on clustering the adherence monitoring data from such devices. We first pre-process the raw discrete functional data into smoothed functional data. Parametric mixture models with change-points, as well as several non-parametric and semi-parametric functional clustering approaches, are adapted and applied to the smoothed adherence data. Simulation studies were conducted to evaluate finite sample performances, on the choices of tuning parameters in the pre-processing step as well as the relative performance of different clustering algorithms. We applied these methods to the HIV Prevention Trials Network 069 study for identifying subgroups with distinct adherence behavior over the study period.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s12561-019-09232-8", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5476415", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4103784", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1041137", 
            "issn": [
              "1867-1764", 
              "1867-1772"
            ], 
            "name": "Statistics in Biosciences", 
            "type": "Periodical"
          }
        ], 
        "name": "Clustering Functional Data with Application to Electronic Medication Adherence Monitoring in HIV Prevention Trials", 
        "pagination": "1-24", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b701eb47ec1606b2dd380c6dab9302a4ebc90b7246ef3f9f9da3625717dcff23"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12561-019-09232-8"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112092663"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12561-019-09232-8", 
          "https://app.dimensions.ai/details/publication/pub.1112092663"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:05", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000335_0000000335/records_125284_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs12561-019-09232-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12561-019-09232-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12561-019-09232-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12561-019-09232-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12561-019-09232-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    155 TRIPLES      21 PREDICATES      50 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12561-019-09232-8 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author N73569d59b5f6455eb8cc3cc04f9b690a
    4 schema:citation sg:pub.10.1007/bf01908075
    5 sg:pub.10.1007/s10107-012-0514-2
    6 sg:pub.10.1007/s10461-010-9799-4
    7 sg:pub.10.1007/s11634-013-0158-y
    8 https://doi.org/10.1002/jps.2600580210
    9 https://doi.org/10.1016/s1473-3099(14)70847-3
    10 https://doi.org/10.1017/s002190020004376x
    11 https://doi.org/10.1080/01621459.1963.10500845
    12 https://doi.org/10.1080/01621459.1971.10482356
    13 https://doi.org/10.1080/01621459.1995.10476572
    14 https://doi.org/10.1080/01621459.2014.957286
    15 https://doi.org/10.1093/infdis/jiw525
    16 https://doi.org/10.1093/pan/mpq025
    17 https://doi.org/10.1109/tac.1974.1100705
    18 https://doi.org/10.1111/j.1467-9868.2007.00605.x
    19 https://doi.org/10.1111/j.1467-9868.2008.00656.x
    20 https://doi.org/10.1111/j.2517-6161.1982.tb01203.x
    21 https://doi.org/10.1136/bmj.39553.670231.25
    22 https://doi.org/10.1198/016214502760047131
    23 https://doi.org/10.1198/016214503000189
    24 https://doi.org/10.1198/106186005x59243
    25 https://doi.org/10.1214/009053605000000660
    26 https://doi.org/10.1214/08-aoas172
    27 https://doi.org/10.1214/aos/1176344136
    28 https://doi.org/10.2307/2346830
    29 https://doi.org/10.2307/3214721
    30 schema:datePublished 2019-02-12
    31 schema:datePublishedReg 2019-02-12
    32 schema:description Maintaining high medication adherence is essential for achieving desired efficacy in clinical trials, especially prevention trials. However, adherence is traditionally measured by self-reports that are subject to reporting biases and measurement error. Recently, electronic medication dispenser devices have been adopted in several HIV pre-exposure prophylaxis prevention studies. These devices are capable of collecting objective, frequent, and timely drug adherence data. The device opening signals generated by such devices are often represented as regularly or irregularly spaced discrete functional data, which are challenging for statistical analysis. In this paper, we focus on clustering the adherence monitoring data from such devices. We first pre-process the raw discrete functional data into smoothed functional data. Parametric mixture models with change-points, as well as several non-parametric and semi-parametric functional clustering approaches, are adapted and applied to the smoothed adherence data. Simulation studies were conducted to evaluate finite sample performances, on the choices of tuning parameters in the pre-processing step as well as the relative performance of different clustering algorithms. We applied these methods to the HIV Prevention Trials Network 069 study for identifying subgroups with distinct adherence behavior over the study period.
    33 schema:genre research_article
    34 schema:inLanguage en
    35 schema:isAccessibleForFree false
    36 schema:isPartOf sg:journal.1041137
    37 schema:name Clustering Functional Data with Application to Electronic Medication Adherence Monitoring in HIV Prevention Trials
    38 schema:pagination 1-24
    39 schema:productId N2a5d802b19ff4f23b4b9472d3158e3f0
    40 N34282a2cbc144d0caae3956993fae3c3
    41 Na8c61ad438b44a4a9bf359d2eea8e58a
    42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112092663
    43 https://doi.org/10.1007/s12561-019-09232-8
    44 schema:sdDatePublished 2019-04-11T09:05
    45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    46 schema:sdPublisher N2e3bf21a89ed4ffe9b949bf069fc0df9
    47 schema:url https://link.springer.com/10.1007%2Fs12561-019-09232-8
    48 sgo:license sg:explorer/license/
    49 sgo:sdDataset articles
    50 rdf:type schema:ScholarlyArticle
    51 N080e6c4889cf4bda8efbd7d0fdbe7d27 schema:affiliation Nf13b16a159844fb5a69427fd15d1af6a
    52 schema:familyName Di
    53 schema:givenName Chongzhi
    54 rdf:type schema:Person
    55 N2a5d802b19ff4f23b4b9472d3158e3f0 schema:name doi
    56 schema:value 10.1007/s12561-019-09232-8
    57 rdf:type schema:PropertyValue
    58 N2df7ff460c8d4d84a74a5e8e973531be rdf:first N080e6c4889cf4bda8efbd7d0fdbe7d27
    59 rdf:rest Nd5185af8f1384856ac9d2b1a48c744a7
    60 N2e3bf21a89ed4ffe9b949bf069fc0df9 schema:name Springer Nature - SN SciGraph project
    61 rdf:type schema:Organization
    62 N34282a2cbc144d0caae3956993fae3c3 schema:name dimensions_id
    63 schema:value pub.1112092663
    64 rdf:type schema:PropertyValue
    65 N6f9dcc7fe34e4ffbbb34c0fb477179c3 schema:affiliation Ne69715e339f34f05a1e1cfb8719c0124
    66 schema:familyName Chen
    67 schema:givenName Ying Qing
    68 rdf:type schema:Person
    69 N73569d59b5f6455eb8cc3cc04f9b690a rdf:first N861f5605cb1a43aab7216067a0f9a115
    70 rdf:rest N2df7ff460c8d4d84a74a5e8e973531be
    71 N861f5605cb1a43aab7216067a0f9a115 schema:affiliation N9730c635d2d14a2eb5a34a94adb7018c
    72 schema:familyName Zhu
    73 schema:givenName Yifan
    74 rdf:type schema:Person
    75 N9730c635d2d14a2eb5a34a94adb7018c schema:name 1100 Fairview Ave. N., Seattle, WA, USA
    76 rdf:type schema:Organization
    77 Na8c61ad438b44a4a9bf359d2eea8e58a schema:name readcube_id
    78 schema:value b701eb47ec1606b2dd380c6dab9302a4ebc90b7246ef3f9f9da3625717dcff23
    79 rdf:type schema:PropertyValue
    80 Nd5185af8f1384856ac9d2b1a48c744a7 rdf:first N6f9dcc7fe34e4ffbbb34c0fb477179c3
    81 rdf:rest rdf:nil
    82 Ne69715e339f34f05a1e1cfb8719c0124 schema:name 1100 Fairview Ave. N., Seattle, WA, USA
    83 rdf:type schema:Organization
    84 Nf13b16a159844fb5a69427fd15d1af6a schema:name 1100 Fairview Ave. N., Seattle, WA, USA
    85 rdf:type schema:Organization
    86 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    87 schema:name Mathematical Sciences
    88 rdf:type schema:DefinedTerm
    89 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Statistics
    91 rdf:type schema:DefinedTerm
    92 sg:grant.4103784 http://pending.schema.org/fundedItem sg:pub.10.1007/s12561-019-09232-8
    93 rdf:type schema:MonetaryGrant
    94 sg:grant.5476415 http://pending.schema.org/fundedItem sg:pub.10.1007/s12561-019-09232-8
    95 rdf:type schema:MonetaryGrant
    96 sg:journal.1041137 schema:issn 1867-1764
    97 1867-1772
    98 schema:name Statistics in Biosciences
    99 rdf:type schema:Periodical
    100 sg:pub.10.1007/bf01908075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022323983
    101 https://doi.org/10.1007/bf01908075
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/s10107-012-0514-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022763272
    104 https://doi.org/10.1007/s10107-012-0514-2
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/s10461-010-9799-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046696795
    107 https://doi.org/10.1007/s10461-010-9799-4
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/s11634-013-0158-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1018942665
    110 https://doi.org/10.1007/s11634-013-0158-y
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1002/jps.2600580210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044656283
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1016/s1473-3099(14)70847-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053332881
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1017/s002190020004376x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051923327
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1080/01621459.1963.10500845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058299788
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1080/01621459.1971.10482356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058300829
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1080/01621459.1995.10476572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304855
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1080/01621459.2014.957286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058306295
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1093/infdis/jiw525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059710467
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1093/pan/mpq025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059969110
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1109/tac.1974.1100705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061471419
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1111/j.1467-9868.2007.00605.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019693550
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1111/j.1467-9868.2008.00656.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021882608
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1111/j.2517-6161.1982.tb01203.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1110458300
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1136/bmj.39553.670231.25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033560750
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1198/016214502760047131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198019
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1198/016214503000189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198108
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1198/106186005x59243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064199490
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1214/009053605000000660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044070258
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1214/08-aoas172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043491856
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1214/aos/1176344136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044872629
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.2307/2346830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101982469
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.2307/3214721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070228873
    155 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...