Joint Modeling of Multivariate Longitudinal Data and Competing Risks Using Multiphase Sub-models View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

Jeevanantham Rajeswaran, Eugene H Blackstone, John Barnard

ABSTRACT

In many clinical studies that involve follow-up, it is common to observe one or more sequences of longitudinal measurements, as well as one or more time to event outcomes. A competing risks situation arises when the probability of occurrence of one event is altered/hindered by another time to event. Recently, there has been much attention paid to the joint analysis of a single longitudinal response and a single time to event outcome, when the missing data mechanism in the longitudinal process is non-ignorable. We, in this paper, propose an extension where multiple longitudinal responses are jointly modeled with competing risks (multiple time to events). Our shared parameter joint model consists of a system of multiphase non-linear mixed effects sub-models for the multiple longitudinal responses, and a system of cause-specific non-proportional hazards frailty sub-models for competing risks, with associations among multiple longitudinal responses and competing risks modeled using latent parameters. The joint model is applied to a data set of patients who are on mechanical circulatory support and are awaiting heart transplant, using readily available software. While on the mechanical circulatory support, patient liver and renal functions may worsen and these in turn may influence one of the two possible competing outcomes: (i) death before transplant; (ii) transplant. In one application, we propose a system of multiphase cause-specific non-proportional hazard sub-model where frailty can be time varying. Performance under different scenarios was assessed using simulation studies. By using the proposed joint modeling of the multiphase sub-models, one can identify: (i) non-linear trends in multiple longitudinal outcomes; (ii) time-varying hazards and cumulative incidence functions of the competing risks; (iii) identify risk factors for the both types of outcomes, where the effect may or may not change with time; and (iv) assess the association between multiple longitudinal and competing risks outcomes, where the association may or may not change with time. More... »

PAGES

651-685

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12561-018-9223-6

DOI

http://dx.doi.org/10.1007/s12561-018-9223-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107645871


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Cleveland Clinic", 
          "id": "https://www.grid.ac/institutes/grid.239578.2", 
          "name": [
            "Department of Quantitative Health Sciences and Heart and Vascular Institute, Cleveland Clinic, JJN3-01, 9500 Euclid Avenue, 44195, Cleveland, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rajeswaran", 
        "givenName": "Jeevanantham", 
        "id": "sg:person.0775300147.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775300147.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cleveland Clinic", 
          "id": "https://www.grid.ac/institutes/grid.239578.2", 
          "name": [
            "Heart and Vascular Institute, Cleveland Clinic, JJN3-01, 9500 Euclid Avenue, 44195, Cleveland, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blackstone", 
        "givenName": "Eugene H", 
        "id": "sg:person.0706740235.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706740235.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cleveland Clinic", 
          "id": "https://www.grid.ac/institutes/grid.239578.2", 
          "name": [
            "Department of Quantitative Health Sciences, Cleveland Clinic, JJN3-01, 9500 Euclid Avenue, 44195, Cleveland, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barnard", 
        "givenName": "John", 
        "id": "sg:person.010324230651.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010324230651.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jtcvs.2012.12.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000941910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.athoracsur.2007.12.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001521431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0006-341x.2002.00742.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005002165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.2749", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006301643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ije/dyu262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007060095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ije/dyu262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007060095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.3451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008501860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11897-010-0026-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011662637", 
          "https://doi.org/10.1007/s11897-010-0026-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0258(19980930)17:18<2061::aid-sim896>3.0.co;2-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013454250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0962280214537255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013956820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0962280214537255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013956820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1164/rccm.201401-0031oc", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014565478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0962280212445834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014594269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0962280212445834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014594269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0962280212445834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014594269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10994-016-5597-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015530322", 
          "https://doi.org/10.1007/s10994-016-5597-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10994-016-5597-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015530322", 
          "https://doi.org/10.1007/s10994-016-5597-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.4780111408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020959785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00949655.2013.878938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020960308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.3562", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022799292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.3562", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022799292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.2712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024676776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2012.01.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026152557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-5223(98)70171-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038712342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-5223(98)70171-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038712342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.3131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040900674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.4263", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040956753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0025-5564(82)90107-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041789369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bimj.200810491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042022290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.athoracsur.2006.02.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044117233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.6158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047291197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1541-0420.2007.00952.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049327899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.3798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052648879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.3798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052648879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1986.10478314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058303291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1995.10476485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058304768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/63.3.581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059418581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/83.2.447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059420666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.92.9.169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063336702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214502388618744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064197946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v072.i07", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068673101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2530284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069975814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2530374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069975891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2532087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069977517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2533118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069978524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2983065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070160867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2983065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070160867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079135032", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v081.i03", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092257596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420035902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095905320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470870709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470870709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1106815529", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781118032985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106815529"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "In many clinical studies that involve follow-up, it is common to observe one or more sequences of longitudinal measurements, as well as one or more time to event outcomes. A competing risks situation arises when the probability of occurrence of one event is altered/hindered by another time to event. Recently, there has been much attention paid to the joint analysis of a single longitudinal response and a single time to event outcome, when the missing data mechanism in the longitudinal process is non-ignorable. We, in this paper, propose an extension where multiple longitudinal responses are jointly modeled with competing risks (multiple time to events). Our shared parameter joint model consists of a system of multiphase non-linear mixed effects sub-models for the multiple longitudinal responses, and a system of cause-specific non-proportional hazards frailty sub-models for competing risks, with associations among multiple longitudinal responses and competing risks modeled using latent parameters. The joint model is applied to a data set of patients who are on mechanical circulatory support and are awaiting heart transplant, using readily available software. While on the mechanical circulatory support, patient liver and renal functions may worsen and these in turn may influence one of the two possible competing outcomes: (i) death before transplant; (ii) transplant. In one application, we propose a system of multiphase cause-specific non-proportional hazard sub-model where frailty can be time varying. Performance under different scenarios was assessed using simulation studies. By using the proposed joint modeling of the multiphase sub-models, one can identify: (i) non-linear trends in multiple longitudinal outcomes; (ii) time-varying hazards and cumulative incidence functions of the competing risks; (iii) identify risk factors for the both types of outcomes, where the effect may or may not change with time; and (iv) assess the association between multiple longitudinal and competing risks outcomes, where the association may or may not change with time.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12561-018-9223-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2542907", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1041137", 
        "issn": [
          "1867-1764", 
          "1867-1772"
        ], 
        "name": "Statistics in Biosciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Joint Modeling of Multivariate Longitudinal Data and Competing Risks Using Multiphase Sub-models", 
    "pagination": "651-685", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d0505df78e38ca96e531e0abfec99455ba6a2a7cbfeb28d7c8fb288cbe290ede"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12561-018-9223-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107645871"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12561-018-9223-6", 
      "https://app.dimensions.ai/details/publication/pub.1107645871"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000569.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12561-018-9223-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12561-018-9223-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12561-018-9223-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12561-018-9223-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12561-018-9223-6'


 

This table displays all metadata directly associated to this object as RDF triples.

211 TRIPLES      21 PREDICATES      71 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12561-018-9223-6 schema:about anzsrc-for:11
2 anzsrc-for:1117
3 schema:author N0f0952d7734a41a1a3b3af02913bc470
4 schema:citation sg:pub.10.1007/s10994-016-5597-1
5 sg:pub.10.1007/s11897-010-0026-4
6 https://app.dimensions.ai/details/publication/pub.1079135032
7 https://app.dimensions.ai/details/publication/pub.1106815529
8 https://doi.org/10.1002/(sici)1097-0258(19980930)17:18<2061::aid-sim896>3.0.co;2-o
9 https://doi.org/10.1002/9780470870709
10 https://doi.org/10.1002/9781118032985
11 https://doi.org/10.1002/bimj.200810491
12 https://doi.org/10.1002/sim.2712
13 https://doi.org/10.1002/sim.2749
14 https://doi.org/10.1002/sim.3131
15 https://doi.org/10.1002/sim.3451
16 https://doi.org/10.1002/sim.3562
17 https://doi.org/10.1002/sim.3798
18 https://doi.org/10.1002/sim.4263
19 https://doi.org/10.1002/sim.4780111408
20 https://doi.org/10.1002/sim.6158
21 https://doi.org/10.1016/0025-5564(82)90107-9
22 https://doi.org/10.1016/j.athoracsur.2006.02.030
23 https://doi.org/10.1016/j.athoracsur.2007.12.023
24 https://doi.org/10.1016/j.jacc.2012.01.024
25 https://doi.org/10.1016/j.jtcvs.2012.12.016
26 https://doi.org/10.1016/s0022-5223(98)70171-0
27 https://doi.org/10.1080/00949655.2013.878938
28 https://doi.org/10.1080/01621459.1986.10478314
29 https://doi.org/10.1080/01621459.1995.10476485
30 https://doi.org/10.1093/biomet/63.3.581
31 https://doi.org/10.1093/biomet/83.2.447
32 https://doi.org/10.1093/ije/dyu262
33 https://doi.org/10.1111/j.0006-341x.2002.00742.x
34 https://doi.org/10.1111/j.1541-0420.2007.00952.x
35 https://doi.org/10.1161/01.cir.92.9.169
36 https://doi.org/10.1164/rccm.201401-0031oc
37 https://doi.org/10.1177/0962280212445834
38 https://doi.org/10.1177/0962280214537255
39 https://doi.org/10.1198/016214502388618744
40 https://doi.org/10.1201/9781420035902
41 https://doi.org/10.18637/jss.v072.i07
42 https://doi.org/10.18637/jss.v081.i03
43 https://doi.org/10.2307/2530284
44 https://doi.org/10.2307/2530374
45 https://doi.org/10.2307/2532087
46 https://doi.org/10.2307/2533118
47 https://doi.org/10.2307/2983065
48 schema:datePublished 2018-12
49 schema:datePublishedReg 2018-12-01
50 schema:description In many clinical studies that involve follow-up, it is common to observe one or more sequences of longitudinal measurements, as well as one or more time to event outcomes. A competing risks situation arises when the probability of occurrence of one event is altered/hindered by another time to event. Recently, there has been much attention paid to the joint analysis of a single longitudinal response and a single time to event outcome, when the missing data mechanism in the longitudinal process is non-ignorable. We, in this paper, propose an extension where multiple longitudinal responses are jointly modeled with competing risks (multiple time to events). Our shared parameter joint model consists of a system of multiphase non-linear mixed effects sub-models for the multiple longitudinal responses, and a system of cause-specific non-proportional hazards frailty sub-models for competing risks, with associations among multiple longitudinal responses and competing risks modeled using latent parameters. The joint model is applied to a data set of patients who are on mechanical circulatory support and are awaiting heart transplant, using readily available software. While on the mechanical circulatory support, patient liver and renal functions may worsen and these in turn may influence one of the two possible competing outcomes: (i) death before transplant; (ii) transplant. In one application, we propose a system of multiphase cause-specific non-proportional hazard sub-model where frailty can be time varying. Performance under different scenarios was assessed using simulation studies. By using the proposed joint modeling of the multiphase sub-models, one can identify: (i) non-linear trends in multiple longitudinal outcomes; (ii) time-varying hazards and cumulative incidence functions of the competing risks; (iii) identify risk factors for the both types of outcomes, where the effect may or may not change with time; and (iv) assess the association between multiple longitudinal and competing risks outcomes, where the association may or may not change with time.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree false
54 schema:isPartOf N521025635d124dc3b604bb7b7a32a3e8
55 Nfee8c5b62a0c433bb1eeffad4b8cb5c6
56 sg:journal.1041137
57 schema:name Joint Modeling of Multivariate Longitudinal Data and Competing Risks Using Multiphase Sub-models
58 schema:pagination 651-685
59 schema:productId N309d0b67ad7a474a9c1f675dd3a20252
60 N9ff7259896bf4f32bc88340061fc8f07
61 Nffddb5fd55b7413c9164402f852fa272
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107645871
63 https://doi.org/10.1007/s12561-018-9223-6
64 schema:sdDatePublished 2019-04-10T14:19
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher Na11e7c0da18b43c58d95bbecfbbc238c
67 schema:url https://link.springer.com/10.1007%2Fs12561-018-9223-6
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N0f0952d7734a41a1a3b3af02913bc470 rdf:first sg:person.0775300147.97
72 rdf:rest Ndcb44ed8eb884f5ab754e638dea2bd4e
73 N309d0b67ad7a474a9c1f675dd3a20252 schema:name doi
74 schema:value 10.1007/s12561-018-9223-6
75 rdf:type schema:PropertyValue
76 N42895a50a84a4f87b4430dc4a5cad893 rdf:first sg:person.010324230651.06
77 rdf:rest rdf:nil
78 N521025635d124dc3b604bb7b7a32a3e8 schema:volumeNumber 10
79 rdf:type schema:PublicationVolume
80 N9ff7259896bf4f32bc88340061fc8f07 schema:name readcube_id
81 schema:value d0505df78e38ca96e531e0abfec99455ba6a2a7cbfeb28d7c8fb288cbe290ede
82 rdf:type schema:PropertyValue
83 Na11e7c0da18b43c58d95bbecfbbc238c schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 Ndcb44ed8eb884f5ab754e638dea2bd4e rdf:first sg:person.0706740235.04
86 rdf:rest N42895a50a84a4f87b4430dc4a5cad893
87 Nfee8c5b62a0c433bb1eeffad4b8cb5c6 schema:issueNumber 3
88 rdf:type schema:PublicationIssue
89 Nffddb5fd55b7413c9164402f852fa272 schema:name dimensions_id
90 schema:value pub.1107645871
91 rdf:type schema:PropertyValue
92 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
93 schema:name Medical and Health Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
96 schema:name Public Health and Health Services
97 rdf:type schema:DefinedTerm
98 sg:grant.2542907 http://pending.schema.org/fundedItem sg:pub.10.1007/s12561-018-9223-6
99 rdf:type schema:MonetaryGrant
100 sg:journal.1041137 schema:issn 1867-1764
101 1867-1772
102 schema:name Statistics in Biosciences
103 rdf:type schema:Periodical
104 sg:person.010324230651.06 schema:affiliation https://www.grid.ac/institutes/grid.239578.2
105 schema:familyName Barnard
106 schema:givenName John
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010324230651.06
108 rdf:type schema:Person
109 sg:person.0706740235.04 schema:affiliation https://www.grid.ac/institutes/grid.239578.2
110 schema:familyName Blackstone
111 schema:givenName Eugene H
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706740235.04
113 rdf:type schema:Person
114 sg:person.0775300147.97 schema:affiliation https://www.grid.ac/institutes/grid.239578.2
115 schema:familyName Rajeswaran
116 schema:givenName Jeevanantham
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775300147.97
118 rdf:type schema:Person
119 sg:pub.10.1007/s10994-016-5597-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015530322
120 https://doi.org/10.1007/s10994-016-5597-1
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s11897-010-0026-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011662637
123 https://doi.org/10.1007/s11897-010-0026-4
124 rdf:type schema:CreativeWork
125 https://app.dimensions.ai/details/publication/pub.1079135032 schema:CreativeWork
126 https://app.dimensions.ai/details/publication/pub.1106815529 schema:CreativeWork
127 https://doi.org/10.1002/(sici)1097-0258(19980930)17:18<2061::aid-sim896>3.0.co;2-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1013454250
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1002/9780470870709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661375
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1002/9781118032985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106815529
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1002/bimj.200810491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042022290
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1002/sim.2712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024676776
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1002/sim.2749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006301643
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1002/sim.3131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040900674
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1002/sim.3451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008501860
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1002/sim.3562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022799292
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1002/sim.3798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052648879
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1002/sim.4263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040956753
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1002/sim.4780111408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020959785
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1002/sim.6158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047291197
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/0025-5564(82)90107-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041789369
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.athoracsur.2006.02.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044117233
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.athoracsur.2007.12.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001521431
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.jacc.2012.01.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026152557
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.jtcvs.2012.12.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000941910
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/s0022-5223(98)70171-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038712342
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1080/00949655.2013.878938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020960308
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1080/01621459.1986.10478314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058303291
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1080/01621459.1995.10476485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304768
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1093/biomet/63.3.581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059418581
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1093/biomet/83.2.447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059420666
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1093/ije/dyu262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007060095
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1111/j.0006-341x.2002.00742.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005002165
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1111/j.1541-0420.2007.00952.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049327899
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1161/01.cir.92.9.169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063336702
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1164/rccm.201401-0031oc schema:sameAs https://app.dimensions.ai/details/publication/pub.1014565478
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1177/0962280212445834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014594269
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1177/0962280214537255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013956820
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1198/016214502388618744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064197946
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1201/9781420035902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095905320
192 rdf:type schema:CreativeWork
193 https://doi.org/10.18637/jss.v072.i07 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068673101
194 rdf:type schema:CreativeWork
195 https://doi.org/10.18637/jss.v081.i03 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092257596
196 rdf:type schema:CreativeWork
197 https://doi.org/10.2307/2530284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069975814
198 rdf:type schema:CreativeWork
199 https://doi.org/10.2307/2530374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069975891
200 rdf:type schema:CreativeWork
201 https://doi.org/10.2307/2532087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069977517
202 rdf:type schema:CreativeWork
203 https://doi.org/10.2307/2533118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069978524
204 rdf:type schema:CreativeWork
205 https://doi.org/10.2307/2983065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070160867
206 rdf:type schema:CreativeWork
207 https://www.grid.ac/institutes/grid.239578.2 schema:alternateName Cleveland Clinic
208 schema:name Department of Quantitative Health Sciences and Heart and Vascular Institute, Cleveland Clinic, JJN3-01, 9500 Euclid Avenue, 44195, Cleveland, OH, USA
209 Department of Quantitative Health Sciences, Cleveland Clinic, JJN3-01, 9500 Euclid Avenue, 44195, Cleveland, OH, USA
210 Heart and Vascular Institute, Cleveland Clinic, JJN3-01, 9500 Euclid Avenue, 44195, Cleveland, OH, USA
211 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...