Extending Tests of Random Effects to Assess for Measurement Invariance in Factor Models View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

Zhenzhen Zhang, Thomas M. Braun, Karen E. Peterson, Howard Hu, Martha M. Téllez-Rojo, Brisa N. Sánchez

ABSTRACT

Factor analysis models are widely used in health research to summarize hard to measure predictor or outcome variable constructs. For example, in the ELEMENT study, factor models are used to summarize lead exposure biomarkers which are thought to indirectly measure prenatal exposure to lead. Classic latent factor models are fitted assuming that factor loadings are constant across all covariate levels (e.g., maternal age in ELEMENT); that is, measurement invariance (MI) is assumed. When the MI is not met, measurement bias is introduced. Traditionally, MI is examined by defining subgroups of the data based on covariates, fitting multi-group factor analysis, and testing differences in factor loadings across covariate groups. In this paper, we develop novel tests of measurement invariance by modeling the factor loadings as varying coeffcients, i.e., letting the factor loading vary across continuous covariate values instead of groups. These varying coeffcients are estimated using penalized splines, where spline coeffcients are penalized by treating them as random coeffcients. The test of MI is then carried out by conducting a likelihood ratio test for the null hypothesis that the variance of the random spline coeffcients equals zero. We use a Monte-Carlo EM algorithm for estimation, and obtain the likelihood using Monte-Carlo in tegration. Using simulations, we compare the Type I error and power of our testing approach and the multi-group testing method. We apply the proposed methods to to summarize data on prenatal biomarkers of lead exposure from the ELEMENT study and find violations of MI due to maternal age. More... »

PAGES

634-650

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12561-018-9222-7

DOI

http://dx.doi.org/10.1007/s12561-018-9222-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107316744

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30805035


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Zhenzhen", 
        "id": "sg:person.01212261670.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212261670.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Braun", 
        "givenName": "Thomas M.", 
        "id": "sg:person.016431462577.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016431462577.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peterson", 
        "givenName": "Karen E.", 
        "id": "sg:person.01212055527.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212055527.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Environmental Health Sciences, University of Washington, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Howard", 
        "id": "sg:person.0742043651.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742043651.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto Nacional de Salud P\u00fablica", 
          "id": "https://www.grid.ac/institutes/grid.415771.1", 
          "name": [
            "Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "T\u00e9llez-Rojo", 
        "givenName": "Martha M.", 
        "id": "sg:person.011351205777.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011351205777.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "S\u00e1nchez", 
        "givenName": "Brisa N.", 
        "id": "sg:person.01040501136.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040501136.71"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10182-010-0126-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008676765", 
          "https://doi.org/10.1007/s10182-010-0126-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10182-010-0126-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008676765", 
          "https://doi.org/10.1007/s10182-010-0126-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/1082-989x.11.4.439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012012328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0883-0355(89)90002-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012065981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14697680802183598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018587837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.elerap.2010.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019508176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11222-012-9314-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022245451", 
          "https://doi.org/10.1007/s11222-012-9314-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11222-012-9314-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022245451", 
          "https://doi.org/10.1007/s11222-012-9314-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kwh271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029714045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02294825", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030477014", 
          "https://doi.org/10.1007/bf02294825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02294825", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030477014", 
          "https://doi.org/10.1007/bf02294825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2004.00438.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034027267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1541-0420.2011.01675.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035452767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1541-0420.2011.01677.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038353495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2008.05.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038685767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9868.00090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039611708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10705511.2012.713261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040309029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ss/1038425655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041521657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9876.2007.00573.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042443228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1541-0420.2008.01022.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043293671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12874-015-0030-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046830215", 
          "https://doi.org/10.1186/s12874-015-0030-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12874-015-0030-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046830215", 
          "https://doi.org/10.1186/s12874-015-0030-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9876.2008.00618.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050101890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1051542274", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9780203489437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051542274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0049124198026003003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053832342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0049124198026003003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053832342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1987.10478472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058303449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/84.2.309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059420745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1471082x15627004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064025870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1471082x15627004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064025870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/106186008x386599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064199661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1542/peds.100.5.856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067819282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2532903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069978306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2533455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069978851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511755453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098667268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511802843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098714359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420010404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109616008"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Factor analysis models are widely used in health research to summarize hard to measure predictor or outcome variable constructs. For example, in the ELEMENT study, factor models are used to summarize lead exposure biomarkers which are thought to indirectly measure prenatal exposure to lead. Classic latent factor models are fitted assuming that factor loadings are constant across all covariate levels (e.g., maternal age in ELEMENT); that is, measurement invariance (MI) is assumed. When the MI is not met, measurement bias is introduced. Traditionally, MI is examined by defining subgroups of the data based on covariates, fitting multi-group factor analysis, and testing differences in factor loadings across covariate groups. In this paper, we develop novel tests of measurement invariance by modeling the factor loadings as varying coeffcients, i.e., letting the factor loading vary across continuous covariate values instead of groups. These varying coeffcients are estimated using penalized splines, where spline coeffcients are penalized by treating them as random coeffcients. The test of MI is then carried out by conducting a likelihood ratio test for the null hypothesis that the variance of the random spline coeffcients equals zero. We use a Monte-Carlo EM algorithm for estimation, and obtain the likelihood using Monte-Carlo in tegration. Using simulations, we compare the Type I error and power of our testing approach and the multi-group testing method. We apply the proposed methods to to summarize data on prenatal biomarkers of lead exposure from the ELEMENT study and find violations of MI due to maternal age.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12561-018-9222-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2439112", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2503122", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2437832", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2436295", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1041137", 
        "issn": [
          "1867-1764", 
          "1867-1772"
        ], 
        "name": "Statistics in Biosciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Extending Tests of Random Effects to Assess for Measurement Invariance in Factor Models", 
    "pagination": "634-650", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "111dadda8c6cd87e71d16cd0fb355906a2894de56d7f670d11c3a5fd26dec70d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30805035"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101498115"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12561-018-9222-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107316744"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12561-018-9222-7", 
      "https://app.dimensions.ai/details/publication/pub.1107316744"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54325_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12561-018-9222-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12561-018-9222-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12561-018-9222-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12561-018-9222-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12561-018-9222-7'


 

This table displays all metadata directly associated to this object as RDF triples.

218 TRIPLES      21 PREDICATES      61 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12561-018-9222-7 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nff8f4d3c39864a0aa89a738b069ddb8d
4 schema:citation sg:pub.10.1007/bf02294825
5 sg:pub.10.1007/s10182-010-0126-1
6 sg:pub.10.1007/s11222-012-9314-z
7 sg:pub.10.1186/s12874-015-0030-1
8 https://app.dimensions.ai/details/publication/pub.1051542274
9 https://doi.org/10.1016/0883-0355(89)90002-5
10 https://doi.org/10.1016/j.csda.2008.05.018
11 https://doi.org/10.1016/j.elerap.2010.07.003
12 https://doi.org/10.1017/cbo9780511755453
13 https://doi.org/10.1017/cbo9780511802843
14 https://doi.org/10.1037/1082-989x.11.4.439
15 https://doi.org/10.1080/01621459.1987.10478472
16 https://doi.org/10.1080/10705511.2012.713261
17 https://doi.org/10.1080/14697680802183598
18 https://doi.org/10.1093/aje/kwh271
19 https://doi.org/10.1093/biomet/84.2.309
20 https://doi.org/10.1111/1467-9868.00090
21 https://doi.org/10.1111/j.1467-9868.2004.00438.x
22 https://doi.org/10.1111/j.1467-9876.2007.00573.x
23 https://doi.org/10.1111/j.1467-9876.2008.00618.x
24 https://doi.org/10.1111/j.1541-0420.2008.01022.x
25 https://doi.org/10.1111/j.1541-0420.2011.01675.x
26 https://doi.org/10.1111/j.1541-0420.2011.01677.x
27 https://doi.org/10.1177/0049124198026003003
28 https://doi.org/10.1177/1471082x15627004
29 https://doi.org/10.1198/106186008x386599
30 https://doi.org/10.1201/9780203489437
31 https://doi.org/10.1201/9781420010404
32 https://doi.org/10.1214/ss/1038425655
33 https://doi.org/10.1542/peds.100.5.856
34 https://doi.org/10.2307/2532903
35 https://doi.org/10.2307/2533455
36 schema:datePublished 2018-12
37 schema:datePublishedReg 2018-12-01
38 schema:description Factor analysis models are widely used in health research to summarize hard to measure predictor or outcome variable constructs. For example, in the ELEMENT study, factor models are used to summarize lead exposure biomarkers which are thought to indirectly measure prenatal exposure to lead. Classic latent factor models are fitted assuming that factor loadings are constant across all covariate levels (e.g., maternal age in ELEMENT); that is, measurement invariance (MI) is assumed. When the MI is not met, measurement bias is introduced. Traditionally, MI is examined by defining subgroups of the data based on covariates, fitting multi-group factor analysis, and testing differences in factor loadings across covariate groups. In this paper, we develop novel tests of measurement invariance by modeling the factor loadings as varying coeffcients, i.e., letting the factor loading vary across continuous covariate values instead of groups. These varying coeffcients are estimated using penalized splines, where spline coeffcients are penalized by treating them as random coeffcients. The test of MI is then carried out by conducting a likelihood ratio test for the null hypothesis that the variance of the random spline coeffcients equals zero. We use a Monte-Carlo EM algorithm for estimation, and obtain the likelihood using Monte-Carlo in tegration. Using simulations, we compare the Type I error and power of our testing approach and the multi-group testing method. We apply the proposed methods to to summarize data on prenatal biomarkers of lead exposure from the ELEMENT study and find violations of MI due to maternal age.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf N48c583f1a8964ca899428024bd046bbc
43 Nb9b4943d8ede4f4a930f8f9efd4ef1f4
44 sg:journal.1041137
45 schema:name Extending Tests of Random Effects to Assess for Measurement Invariance in Factor Models
46 schema:pagination 634-650
47 schema:productId N236ac3ce3f1548158348d26e4570e581
48 N3c84c1c65efc4d39b3d03fe74ae4430b
49 N5f60ab944f774a09b477f81236f6b0d5
50 N6d46cc137bf34f6bb0404f2366ecf717
51 Ne5323bc29c5a4a5b85aab1ed105a6765
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107316744
53 https://doi.org/10.1007/s12561-018-9222-7
54 schema:sdDatePublished 2019-04-11T10:19
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N43b55d518eee4f95b3ed805615f732f9
57 schema:url https://link.springer.com/10.1007%2Fs12561-018-9222-7
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N0804cc53b35a4323a6643b864bdf1d79 rdf:first sg:person.01040501136.71
62 rdf:rest rdf:nil
63 N1a8e38bb08e745449787d3f23639626d rdf:first sg:person.01212055527.27
64 rdf:rest N5d70896521064cf4b8781b406a912b8e
65 N236ac3ce3f1548158348d26e4570e581 schema:name pubmed_id
66 schema:value 30805035
67 rdf:type schema:PropertyValue
68 N3c84c1c65efc4d39b3d03fe74ae4430b schema:name readcube_id
69 schema:value 111dadda8c6cd87e71d16cd0fb355906a2894de56d7f670d11c3a5fd26dec70d
70 rdf:type schema:PropertyValue
71 N43b55d518eee4f95b3ed805615f732f9 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N48c583f1a8964ca899428024bd046bbc schema:issueNumber 3
74 rdf:type schema:PublicationIssue
75 N5d70896521064cf4b8781b406a912b8e rdf:first sg:person.0742043651.66
76 rdf:rest N8017061b6f9744f1b7c06be5f9c89d5b
77 N5f60ab944f774a09b477f81236f6b0d5 schema:name doi
78 schema:value 10.1007/s12561-018-9222-7
79 rdf:type schema:PropertyValue
80 N6d46cc137bf34f6bb0404f2366ecf717 schema:name nlm_unique_id
81 schema:value 101498115
82 rdf:type schema:PropertyValue
83 N8017061b6f9744f1b7c06be5f9c89d5b rdf:first sg:person.011351205777.19
84 rdf:rest N0804cc53b35a4323a6643b864bdf1d79
85 Nb9b4943d8ede4f4a930f8f9efd4ef1f4 schema:volumeNumber 10
86 rdf:type schema:PublicationVolume
87 Nbb72cf4a9c044a1fa6e7a44d1a7123f6 rdf:first sg:person.016431462577.13
88 rdf:rest N1a8e38bb08e745449787d3f23639626d
89 Ne5323bc29c5a4a5b85aab1ed105a6765 schema:name dimensions_id
90 schema:value pub.1107316744
91 rdf:type schema:PropertyValue
92 Nff8f4d3c39864a0aa89a738b069ddb8d rdf:first sg:person.01212261670.10
93 rdf:rest Nbb72cf4a9c044a1fa6e7a44d1a7123f6
94 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
95 schema:name Mathematical Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
98 schema:name Statistics
99 rdf:type schema:DefinedTerm
100 sg:grant.2436295 http://pending.schema.org/fundedItem sg:pub.10.1007/s12561-018-9222-7
101 rdf:type schema:MonetaryGrant
102 sg:grant.2437832 http://pending.schema.org/fundedItem sg:pub.10.1007/s12561-018-9222-7
103 rdf:type schema:MonetaryGrant
104 sg:grant.2439112 http://pending.schema.org/fundedItem sg:pub.10.1007/s12561-018-9222-7
105 rdf:type schema:MonetaryGrant
106 sg:grant.2503122 http://pending.schema.org/fundedItem sg:pub.10.1007/s12561-018-9222-7
107 rdf:type schema:MonetaryGrant
108 sg:journal.1041137 schema:issn 1867-1764
109 1867-1772
110 schema:name Statistics in Biosciences
111 rdf:type schema:Periodical
112 sg:person.01040501136.71 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
113 schema:familyName Sánchez
114 schema:givenName Brisa N.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040501136.71
116 rdf:type schema:Person
117 sg:person.011351205777.19 schema:affiliation https://www.grid.ac/institutes/grid.415771.1
118 schema:familyName Téllez-Rojo
119 schema:givenName Martha M.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011351205777.19
121 rdf:type schema:Person
122 sg:person.01212055527.27 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
123 schema:familyName Peterson
124 schema:givenName Karen E.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212055527.27
126 rdf:type schema:Person
127 sg:person.01212261670.10 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
128 schema:familyName Zhang
129 schema:givenName Zhenzhen
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212261670.10
131 rdf:type schema:Person
132 sg:person.016431462577.13 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
133 schema:familyName Braun
134 schema:givenName Thomas M.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016431462577.13
136 rdf:type schema:Person
137 sg:person.0742043651.66 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
138 schema:familyName Hu
139 schema:givenName Howard
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742043651.66
141 rdf:type schema:Person
142 sg:pub.10.1007/bf02294825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030477014
143 https://doi.org/10.1007/bf02294825
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s10182-010-0126-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008676765
146 https://doi.org/10.1007/s10182-010-0126-1
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s11222-012-9314-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1022245451
149 https://doi.org/10.1007/s11222-012-9314-z
150 rdf:type schema:CreativeWork
151 sg:pub.10.1186/s12874-015-0030-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046830215
152 https://doi.org/10.1186/s12874-015-0030-1
153 rdf:type schema:CreativeWork
154 https://app.dimensions.ai/details/publication/pub.1051542274 schema:CreativeWork
155 https://doi.org/10.1016/0883-0355(89)90002-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012065981
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.csda.2008.05.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038685767
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.elerap.2010.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019508176
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1017/cbo9780511755453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098667268
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1017/cbo9780511802843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098714359
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1037/1082-989x.11.4.439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012012328
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1080/01621459.1987.10478472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058303449
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1080/10705511.2012.713261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040309029
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1080/14697680802183598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018587837
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1093/aje/kwh271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029714045
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1093/biomet/84.2.309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059420745
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1111/1467-9868.00090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039611708
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1111/j.1467-9868.2004.00438.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034027267
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1111/j.1467-9876.2007.00573.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042443228
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1111/j.1467-9876.2008.00618.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050101890
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1111/j.1541-0420.2008.01022.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043293671
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1111/j.1541-0420.2011.01675.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035452767
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1111/j.1541-0420.2011.01677.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038353495
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1177/0049124198026003003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053832342
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1177/1471082x15627004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064025870
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1198/106186008x386599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064199661
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1201/9780203489437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051542274
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1201/9781420010404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109616008
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1214/ss/1038425655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041521657
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1542/peds.100.5.856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067819282
204 rdf:type schema:CreativeWork
205 https://doi.org/10.2307/2532903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069978306
206 rdf:type schema:CreativeWork
207 https://doi.org/10.2307/2533455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069978851
208 rdf:type schema:CreativeWork
209 https://www.grid.ac/institutes/grid.214458.e schema:alternateName University of Michigan–Ann Arbor
210 schema:name Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
211 Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
212 rdf:type schema:Organization
213 https://www.grid.ac/institutes/grid.34477.33 schema:alternateName University of Washington
214 schema:name Department of Environmental Health Sciences, University of Washington, Seattle, WA, USA
215 rdf:type schema:Organization
216 https://www.grid.ac/institutes/grid.415771.1 schema:alternateName Instituto Nacional de Salud Pública
217 schema:name Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Mexico
218 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...