Conditional Regression Based on a Multivariate Zero-Inflated Logistic-Normal Model for Microbiome Relative Abundance Data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Zhigang Li, Katherine Lee, Margaret R. Karagas, Juliette C. Madan, Anne G. Hoen, A. James O’Malley, Hongzhe Li

ABSTRACT

The human microbiome plays critical roles in human health and has been linked to many diseases. While advanced sequencing technologies can characterize the composition of the microbiome in unprecedented detail, it remains challenging to disentangle the complex interplay between human microbiome and disease risk factors due to the complicated nature of microbiome data. Excessive numbers e f zero values, high dimensionality, the hierarchical phylogenetic tree and compositional structure are compounded and consequently make existing methods inadequate to appropriately address these issues. We propose a multivariate two-part zero-inflated logistic normal (MZILN) model to analyze the association of disease risk factors with individual microbial taxa and overall microbial community composition. This approach can naturally handle excessive numbers e f zeros and the compositional data structure with the discrete part and the logistic-normal part e f the model. For parameter estimation, an estimating equations approach is employed that enables us to address the complex inter-taxa correlation structure induced by the hierarchical phylogenetic tree structure and the compositional data structure. This model is able to incorporate standard regularization approaches to deal with high dimensionality. Simulation shews that our model outperforms existing methods. Our approach is also compared to ethers using the analysis of real microbiome data. More... »

PAGES

587-608

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12561-018-9219-2

DOI

http://dx.doi.org/10.1007/s12561-018-9219-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105449943

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30923584


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Florida", 
          "id": "https://www.grid.ac/institutes/grid.15276.37", 
          "name": [
            "Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, 03756, Lebanon, NH, USA", 
            "Children\u2019s Environmental Health and Disease Prevention Research Center at Dartmouth, Hanover, NH, USA", 
            "Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, 03756, Lebanon, NH, USA", 
            "Department of Biostatistics, University of Florida, 32611, Gainesville, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Zhigang", 
        "id": "sg:person.01322033735.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322033735.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Phillips Exeter Academy", 
          "id": "https://www.grid.ac/institutes/grid.447463.6", 
          "name": [
            "Phillips Exeter Academy, 03833, Exeter, NH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Katherine", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dartmouth College", 
          "id": "https://www.grid.ac/institutes/grid.254880.3", 
          "name": [
            "Children\u2019s Environmental Health and Disease Prevention Research Center at Dartmouth, Hanover, NH, USA", 
            "Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, 03756, Lebanon, NH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karagas", 
        "givenName": "Margaret R.", 
        "id": "sg:person.07573167157.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07573167157.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Children's Hospital at Dartmouth Hitchcock", 
          "id": "https://www.grid.ac/institutes/grid.414110.1", 
          "name": [
            "Children\u2019s Environmental Health and Disease Prevention Research Center at Dartmouth, Hanover, NH, USA", 
            "Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, 03756, Lebanon, NH, USA", 
            "Division of Neonatology, Department of Pediatrics, Children\u2019s Hospital at Dartmouth, Lebanon, NH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Madan", 
        "givenName": "Juliette C.", 
        "id": "sg:person.01226301357.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01226301357.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dartmouth College", 
          "id": "https://www.grid.ac/institutes/grid.254880.3", 
          "name": [
            "Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, 03756, Lebanon, NH, USA", 
            "Children\u2019s Environmental Health and Disease Prevention Research Center at Dartmouth, Hanover, NH, USA", 
            "Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, 03756, Lebanon, NH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hoen", 
        "givenName": "Anne G.", 
        "id": "sg:person.0725772270.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725772270.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dartmouth Institute for Health Policy and Clinical Practice", 
          "id": "https://www.grid.ac/institutes/grid.414049.c", 
          "name": [
            "Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, 03756, Lebanon, NH, USA", 
            "The Dartmouth Institute for Health Policy and Clinical Practice, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, 03756, Lebanon, NH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "O\u2019Malley", 
        "givenName": "A. James", 
        "id": "sg:person.0717472761.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717472761.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.25879.31", 
          "name": [
            "Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, 19104, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Hongzhe", 
        "id": "sg:person.013262445067.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013262445067.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1214/09-aos729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003710803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.126516.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003990470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/73.1.13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005412165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpeds.2015.02.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005977180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006761326", 
          "https://doi.org/10.1038/nature07008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009917183", 
          "https://doi.org/10.1038/nature06244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/fetalneonatal-2011-301373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010370461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010611135", 
          "https://doi.org/10.1038/nmeth.2066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2222.2009.03326.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010877876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2011.74", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012050464", 
          "https://doi.org/10.1038/ismej.2011.74"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmcp1001110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012270762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ijo.2012.132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012425643", 
          "https://doi.org/10.1038/ijo.2012.132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0047-259x(90)90084-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014004742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1471-0528.13601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014584719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/jmm.0.46101-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014813910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/biom.12079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015211334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2042-5783-2-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015648092", 
          "https://doi.org/10.1186/2042-5783-2-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mpg.0000000000000928", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017606528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mpg.0000000000000928", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017606528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017719492", 
          "https://doi.org/10.1038/nrg1709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017719492", 
          "https://doi.org/10.1038/nrg1709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg3182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018201256", 
          "https://doi.org/10.1038/nrg3182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molmed.2014.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021857886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7717/peerj.157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022350686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023893418", 
          "https://doi.org/10.1038/nature05414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023893418", 
          "https://doi.org/10.1038/nature05414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023893418", 
          "https://doi.org/10.1038/nature05414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envres.2013.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024884751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1067/mai.2001.118130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025307599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/biom.12418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027782206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jaci.2011.04.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028984795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gm228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029672269", 
          "https://doi.org/10.1186/gm228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12876-016-0498-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029987285", 
          "https://doi.org/10.1186/s12876-016-0498-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12876-016-0498-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029987285", 
          "https://doi.org/10.1186/s12876-016-0498-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0052078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031057368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10482-008-9232-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033194378", 
          "https://doi.org/10.1007/s10482-008-9232-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fped.2014.00109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033649951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-statistics-010814-020351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033972213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chom.2015.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038368212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2012.8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038992953", 
          "https://doi.org/10.1038/ismej.2012.8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/embor.2012.32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039858390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btw308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040993445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci78366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043628264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2005.00503.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043971564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkn879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044918953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jamapediatrics.2015.3732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045525142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1003531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048123102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049844726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1542/peds.2005-2824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050935985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archinte.167.8.821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052747468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0017996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053230675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/cmb.2015.0157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059246318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btw804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059415167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/asm018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059421565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/asu031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059422153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214501753381850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064197897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214501753382273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064197908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214506000000735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/12-aoas592", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064392937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/16-aoas928", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064395598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3150/12-bejsp10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071056880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079334506", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/17-aoas1102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101483748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/17-aoas1102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101483748"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "The human microbiome plays critical roles in human health and has been linked to many diseases. While advanced sequencing technologies can characterize the composition of the microbiome in unprecedented detail, it remains challenging to disentangle the complex interplay between human microbiome and disease risk factors due to the complicated nature of microbiome data. Excessive numbers e f zero values, high dimensionality, the hierarchical phylogenetic tree and compositional structure are compounded and consequently make existing methods inadequate to appropriately address these issues. We propose a multivariate two-part zero-inflated logistic normal (MZILN) model to analyze the association of disease risk factors with individual microbial taxa and overall microbial community composition. This approach can naturally handle excessive numbers e f zeros and the compositional data structure with the discrete part and the logistic-normal part e f the model. For parameter estimation, an estimating equations approach is employed that enables us to address the complex inter-taxa correlation structure induced by the hierarchical phylogenetic tree structure and the compositional data structure. This model is able to incorporate standard regularization approaches to deal with high dimensionality. Simulation shews that our model outperforms existing methods. Our approach is also compared to ethers using the analysis of real microbiome data.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12561-018-9219-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3858553", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7029117", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2479274", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6443788", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2436293", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7027573", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7027567", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2437958", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1041137", 
        "issn": [
          "1867-1764", 
          "1867-1772"
        ], 
        "name": "Statistics in Biosciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Conditional Regression Based on a Multivariate Zero-Inflated Logistic-Normal Model for Microbiome Relative Abundance Data", 
    "pagination": "587-608", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0b6c3ed2220a833291221f9a2f2e74734d89c6e353b47cf43a87793439e17d50"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30923584"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101498115"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12561-018-9219-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105449943"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12561-018-9219-2", 
      "https://app.dimensions.ai/details/publication/pub.1105449943"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130817_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12561-018-9219-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12561-018-9219-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12561-018-9219-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12561-018-9219-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12561-018-9219-2'


 

This table displays all metadata directly associated to this object as RDF triples.

335 TRIPLES      21 PREDICATES      87 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12561-018-9219-2 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N57344f782b0c43699a47cb64a2633785
4 schema:citation sg:pub.10.1007/s10482-008-9232-4
5 sg:pub.10.1038/ijo.2012.132
6 sg:pub.10.1038/ismej.2011.74
7 sg:pub.10.1038/ismej.2012.8
8 sg:pub.10.1038/nature05414
9 sg:pub.10.1038/nature06244
10 sg:pub.10.1038/nature07008
11 sg:pub.10.1038/nmeth.2066
12 sg:pub.10.1038/nrg1709
13 sg:pub.10.1038/nrg3182
14 sg:pub.10.1186/2042-5783-2-3
15 sg:pub.10.1186/gm228
16 sg:pub.10.1186/s12876-016-0498-0
17 https://app.dimensions.ai/details/publication/pub.1079334506
18 https://doi.org/10.1001/archinte.167.8.821
19 https://doi.org/10.1001/jamapediatrics.2015.3732
20 https://doi.org/10.1016/0047-259x(90)90084-u
21 https://doi.org/10.1016/j.chom.2015.04.006
22 https://doi.org/10.1016/j.envres.2013.05.001
23 https://doi.org/10.1016/j.jaci.2011.04.060
24 https://doi.org/10.1016/j.jpeds.2015.02.049
25 https://doi.org/10.1016/j.molmed.2014.12.002
26 https://doi.org/10.1038/embor.2012.32
27 https://doi.org/10.1056/nejmcp1001110
28 https://doi.org/10.1067/mai.2001.118130
29 https://doi.org/10.1089/cmb.2015.0157
30 https://doi.org/10.1093/bioinformatics/bts342
31 https://doi.org/10.1093/bioinformatics/btw308
32 https://doi.org/10.1093/bioinformatics/btw804
33 https://doi.org/10.1093/biomet/73.1.13
34 https://doi.org/10.1093/biomet/asm018
35 https://doi.org/10.1093/biomet/asu031
36 https://doi.org/10.1093/nar/gkn879
37 https://doi.org/10.1097/mpg.0000000000000928
38 https://doi.org/10.1099/jmm.0.46101-0
39 https://doi.org/10.1101/gr.126516.111
40 https://doi.org/10.1111/1471-0528.13601
41 https://doi.org/10.1111/biom.12079
42 https://doi.org/10.1111/biom.12418
43 https://doi.org/10.1111/j.1365-2222.2009.03326.x
44 https://doi.org/10.1111/j.1467-9868.2005.00503.x
45 https://doi.org/10.1136/fetalneonatal-2011-301373
46 https://doi.org/10.1146/annurev-statistics-010814-020351
47 https://doi.org/10.1172/jci78366
48 https://doi.org/10.1198/016214501753381850
49 https://doi.org/10.1198/016214501753382273
50 https://doi.org/10.1198/016214506000000735
51 https://doi.org/10.1214/09-aos729
52 https://doi.org/10.1214/12-aoas592
53 https://doi.org/10.1214/16-aoas928
54 https://doi.org/10.1214/17-aoas1102
55 https://doi.org/10.1371/journal.pcbi.1003531
56 https://doi.org/10.1371/journal.pone.0017996
57 https://doi.org/10.1371/journal.pone.0052078
58 https://doi.org/10.1542/peds.2005-2824
59 https://doi.org/10.3150/12-bejsp10
60 https://doi.org/10.3389/fped.2014.00109
61 https://doi.org/10.7717/peerj.157
62 schema:datePublished 2018-12
63 schema:datePublishedReg 2018-12-01
64 schema:description The human microbiome plays critical roles in human health and has been linked to many diseases. While advanced sequencing technologies can characterize the composition of the microbiome in unprecedented detail, it remains challenging to disentangle the complex interplay between human microbiome and disease risk factors due to the complicated nature of microbiome data. Excessive numbers e f zero values, high dimensionality, the hierarchical phylogenetic tree and compositional structure are compounded and consequently make existing methods inadequate to appropriately address these issues. We propose a multivariate two-part zero-inflated logistic normal (MZILN) model to analyze the association of disease risk factors with individual microbial taxa and overall microbial community composition. This approach can naturally handle excessive numbers e f zeros and the compositional data structure with the discrete part and the logistic-normal part e f the model. For parameter estimation, an estimating equations approach is employed that enables us to address the complex inter-taxa correlation structure induced by the hierarchical phylogenetic tree structure and the compositional data structure. This model is able to incorporate standard regularization approaches to deal with high dimensionality. Simulation shews that our model outperforms existing methods. Our approach is also compared to ethers using the analysis of real microbiome data.
65 schema:genre research_article
66 schema:inLanguage en
67 schema:isAccessibleForFree true
68 schema:isPartOf N6300df82b97649efb91aabe7f3b76614
69 N9e30be3280f04857b42851bd6219da40
70 sg:journal.1041137
71 schema:name Conditional Regression Based on a Multivariate Zero-Inflated Logistic-Normal Model for Microbiome Relative Abundance Data
72 schema:pagination 587-608
73 schema:productId N66f7c1bac961421d98c5980d6ef1c8b3
74 N71b335ad36f0497cb17d4aabd16f478c
75 N785e22384b1d4e74adefd04346dc7452
76 N892796a1252c45209341db21ba973b95
77 Nb94c9b72eb1c4bf189a7c7b4b2d5b67e
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105449943
79 https://doi.org/10.1007/s12561-018-9219-2
80 schema:sdDatePublished 2019-04-11T13:57
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher N528c24deb3f649df9e7a86620856335c
83 schema:url https://link.springer.com/10.1007%2Fs12561-018-9219-2
84 sgo:license sg:explorer/license/
85 sgo:sdDataset articles
86 rdf:type schema:ScholarlyArticle
87 N528c24deb3f649df9e7a86620856335c schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 N57344f782b0c43699a47cb64a2633785 rdf:first sg:person.01322033735.61
90 rdf:rest Nb0ebcd7e8c69425499485341706ab5b9
91 N596db911f859445784672b0d1d21ec01 rdf:first sg:person.013262445067.87
92 rdf:rest rdf:nil
93 N6300df82b97649efb91aabe7f3b76614 schema:issueNumber 3
94 rdf:type schema:PublicationIssue
95 N66f7c1bac961421d98c5980d6ef1c8b3 schema:name nlm_unique_id
96 schema:value 101498115
97 rdf:type schema:PropertyValue
98 N71b335ad36f0497cb17d4aabd16f478c schema:name dimensions_id
99 schema:value pub.1105449943
100 rdf:type schema:PropertyValue
101 N785e22384b1d4e74adefd04346dc7452 schema:name doi
102 schema:value 10.1007/s12561-018-9219-2
103 rdf:type schema:PropertyValue
104 N892796a1252c45209341db21ba973b95 schema:name pubmed_id
105 schema:value 30923584
106 rdf:type schema:PropertyValue
107 N97e5608e645649729960e7afe19a87f8 schema:affiliation https://www.grid.ac/institutes/grid.447463.6
108 schema:familyName Lee
109 schema:givenName Katherine
110 rdf:type schema:Person
111 N9b0daa014c374c5dbb9dc3095157b3b1 rdf:first sg:person.07573167157.40
112 rdf:rest Na12c11316a6e4eba870a4cbf228ad760
113 N9e30be3280f04857b42851bd6219da40 schema:volumeNumber 10
114 rdf:type schema:PublicationVolume
115 Na12c11316a6e4eba870a4cbf228ad760 rdf:first sg:person.01226301357.78
116 rdf:rest Na65ef0a960514649835e96eafbd2113a
117 Na65ef0a960514649835e96eafbd2113a rdf:first sg:person.0725772270.83
118 rdf:rest Neacd577ff1b0457cb404ccb151e08791
119 Nb0ebcd7e8c69425499485341706ab5b9 rdf:first N97e5608e645649729960e7afe19a87f8
120 rdf:rest N9b0daa014c374c5dbb9dc3095157b3b1
121 Nb94c9b72eb1c4bf189a7c7b4b2d5b67e schema:name readcube_id
122 schema:value 0b6c3ed2220a833291221f9a2f2e74734d89c6e353b47cf43a87793439e17d50
123 rdf:type schema:PropertyValue
124 Neacd577ff1b0457cb404ccb151e08791 rdf:first sg:person.0717472761.31
125 rdf:rest N596db911f859445784672b0d1d21ec01
126 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
127 schema:name Mathematical Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
130 schema:name Statistics
131 rdf:type schema:DefinedTerm
132 sg:grant.2436293 http://pending.schema.org/fundedItem sg:pub.10.1007/s12561-018-9219-2
133 rdf:type schema:MonetaryGrant
134 sg:grant.2437958 http://pending.schema.org/fundedItem sg:pub.10.1007/s12561-018-9219-2
135 rdf:type schema:MonetaryGrant
136 sg:grant.2479274 http://pending.schema.org/fundedItem sg:pub.10.1007/s12561-018-9219-2
137 rdf:type schema:MonetaryGrant
138 sg:grant.3858553 http://pending.schema.org/fundedItem sg:pub.10.1007/s12561-018-9219-2
139 rdf:type schema:MonetaryGrant
140 sg:grant.6443788 http://pending.schema.org/fundedItem sg:pub.10.1007/s12561-018-9219-2
141 rdf:type schema:MonetaryGrant
142 sg:grant.7027567 http://pending.schema.org/fundedItem sg:pub.10.1007/s12561-018-9219-2
143 rdf:type schema:MonetaryGrant
144 sg:grant.7027573 http://pending.schema.org/fundedItem sg:pub.10.1007/s12561-018-9219-2
145 rdf:type schema:MonetaryGrant
146 sg:grant.7029117 http://pending.schema.org/fundedItem sg:pub.10.1007/s12561-018-9219-2
147 rdf:type schema:MonetaryGrant
148 sg:journal.1041137 schema:issn 1867-1764
149 1867-1772
150 schema:name Statistics in Biosciences
151 rdf:type schema:Periodical
152 sg:person.01226301357.78 schema:affiliation https://www.grid.ac/institutes/grid.414110.1
153 schema:familyName Madan
154 schema:givenName Juliette C.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01226301357.78
156 rdf:type schema:Person
157 sg:person.01322033735.61 schema:affiliation https://www.grid.ac/institutes/grid.15276.37
158 schema:familyName Li
159 schema:givenName Zhigang
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322033735.61
161 rdf:type schema:Person
162 sg:person.013262445067.87 schema:affiliation https://www.grid.ac/institutes/grid.25879.31
163 schema:familyName Li
164 schema:givenName Hongzhe
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013262445067.87
166 rdf:type schema:Person
167 sg:person.0717472761.31 schema:affiliation https://www.grid.ac/institutes/grid.414049.c
168 schema:familyName O’Malley
169 schema:givenName A. James
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717472761.31
171 rdf:type schema:Person
172 sg:person.0725772270.83 schema:affiliation https://www.grid.ac/institutes/grid.254880.3
173 schema:familyName Hoen
174 schema:givenName Anne G.
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725772270.83
176 rdf:type schema:Person
177 sg:person.07573167157.40 schema:affiliation https://www.grid.ac/institutes/grid.254880.3
178 schema:familyName Karagas
179 schema:givenName Margaret R.
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07573167157.40
181 rdf:type schema:Person
182 sg:pub.10.1007/s10482-008-9232-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033194378
183 https://doi.org/10.1007/s10482-008-9232-4
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/ijo.2012.132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012425643
186 https://doi.org/10.1038/ijo.2012.132
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/ismej.2011.74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012050464
189 https://doi.org/10.1038/ismej.2011.74
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/ismej.2012.8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038992953
192 https://doi.org/10.1038/ismej.2012.8
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/nature05414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023893418
195 https://doi.org/10.1038/nature05414
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/nature06244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009917183
198 https://doi.org/10.1038/nature06244
199 rdf:type schema:CreativeWork
200 sg:pub.10.1038/nature07008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006761326
201 https://doi.org/10.1038/nature07008
202 rdf:type schema:CreativeWork
203 sg:pub.10.1038/nmeth.2066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010611135
204 https://doi.org/10.1038/nmeth.2066
205 rdf:type schema:CreativeWork
206 sg:pub.10.1038/nrg1709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017719492
207 https://doi.org/10.1038/nrg1709
208 rdf:type schema:CreativeWork
209 sg:pub.10.1038/nrg3182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018201256
210 https://doi.org/10.1038/nrg3182
211 rdf:type schema:CreativeWork
212 sg:pub.10.1186/2042-5783-2-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015648092
213 https://doi.org/10.1186/2042-5783-2-3
214 rdf:type schema:CreativeWork
215 sg:pub.10.1186/gm228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029672269
216 https://doi.org/10.1186/gm228
217 rdf:type schema:CreativeWork
218 sg:pub.10.1186/s12876-016-0498-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029987285
219 https://doi.org/10.1186/s12876-016-0498-0
220 rdf:type schema:CreativeWork
221 https://app.dimensions.ai/details/publication/pub.1079334506 schema:CreativeWork
222 https://doi.org/10.1001/archinte.167.8.821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052747468
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1001/jamapediatrics.2015.3732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045525142
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/0047-259x(90)90084-u schema:sameAs https://app.dimensions.ai/details/publication/pub.1014004742
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/j.chom.2015.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038368212
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/j.envres.2013.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024884751
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1016/j.jaci.2011.04.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028984795
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1016/j.jpeds.2015.02.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005977180
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1016/j.molmed.2014.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021857886
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1038/embor.2012.32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039858390
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1056/nejmcp1001110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012270762
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1067/mai.2001.118130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025307599
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1089/cmb.2015.0157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059246318
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1093/bioinformatics/bts342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049844726
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1093/bioinformatics/btw308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040993445
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1093/bioinformatics/btw804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059415167
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1093/biomet/73.1.13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005412165
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1093/biomet/asm018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059421565
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1093/biomet/asu031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059422153
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1093/nar/gkn879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044918953
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1097/mpg.0000000000000928 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017606528
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1099/jmm.0.46101-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014813910
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1101/gr.126516.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003990470
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1111/1471-0528.13601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014584719
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1111/biom.12079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015211334
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1111/biom.12418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027782206
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1111/j.1365-2222.2009.03326.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010877876
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1111/j.1467-9868.2005.00503.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043971564
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1136/fetalneonatal-2011-301373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010370461
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1146/annurev-statistics-010814-020351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033972213
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1172/jci78366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043628264
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1198/016214501753381850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064197897
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1198/016214501753382273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064197908
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1198/016214506000000735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198542
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1214/09-aos729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003710803
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1214/12-aoas592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064392937
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1214/16-aoas928 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064395598
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1214/17-aoas1102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101483748
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1371/journal.pcbi.1003531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048123102
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1371/journal.pone.0017996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053230675
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1371/journal.pone.0052078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031057368
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1542/peds.2005-2824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050935985
303 rdf:type schema:CreativeWork
304 https://doi.org/10.3150/12-bejsp10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071056880
305 rdf:type schema:CreativeWork
306 https://doi.org/10.3389/fped.2014.00109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033649951
307 rdf:type schema:CreativeWork
308 https://doi.org/10.7717/peerj.157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022350686
309 rdf:type schema:CreativeWork
310 https://www.grid.ac/institutes/grid.15276.37 schema:alternateName University of Florida
311 schema:name Children’s Environmental Health and Disease Prevention Research Center at Dartmouth, Hanover, NH, USA
312 Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, 03756, Lebanon, NH, USA
313 Department of Biostatistics, University of Florida, 32611, Gainesville, FL, USA
314 Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, 03756, Lebanon, NH, USA
315 rdf:type schema:Organization
316 https://www.grid.ac/institutes/grid.254880.3 schema:alternateName Dartmouth College
317 schema:name Children’s Environmental Health and Disease Prevention Research Center at Dartmouth, Hanover, NH, USA
318 Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, 03756, Lebanon, NH, USA
319 Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, 03756, Lebanon, NH, USA
320 rdf:type schema:Organization
321 https://www.grid.ac/institutes/grid.25879.31 schema:alternateName University of Pennsylvania
322 schema:name Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, 19104, Philadelphia, PA, USA
323 rdf:type schema:Organization
324 https://www.grid.ac/institutes/grid.414049.c schema:alternateName Dartmouth Institute for Health Policy and Clinical Practice
325 schema:name Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, 03756, Lebanon, NH, USA
326 The Dartmouth Institute for Health Policy and Clinical Practice, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, 03756, Lebanon, NH, USA
327 rdf:type schema:Organization
328 https://www.grid.ac/institutes/grid.414110.1 schema:alternateName Children's Hospital at Dartmouth Hitchcock
329 schema:name Children’s Environmental Health and Disease Prevention Research Center at Dartmouth, Hanover, NH, USA
330 Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, 03756, Lebanon, NH, USA
331 Division of Neonatology, Department of Pediatrics, Children’s Hospital at Dartmouth, Lebanon, NH, USA
332 rdf:type schema:Organization
333 https://www.grid.ac/institutes/grid.447463.6 schema:alternateName Phillips Exeter Academy
334 schema:name Phillips Exeter Academy, 03833, Exeter, NH, USA
335 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...