Tucker Tensor Regression and Neuroimaging Analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

Xiaoshan Li, Da Xu, Hua Zhou, Lexin Li

ABSTRACT

Neuroimaging data often take the form of high-dimensional arrays, also known as tensors. Addressing scientific questions arising from such data demands new regression models that take multidimensional arrays as covariates. Simply turning an image array into a vector would both cause extremely high dimensionality and destroy the inherent spatial structure of the array. In a recent work, Zhou et al. (J Am Stat Assoc, 108(502):540–552, 2013) proposed a family of generalized linear tensor regression models based upon the CP (CANDECOMP/PARAFAC) decomposition of regression coefficient array. Low-rank approximation brings the ultrahigh dimensionality to a manageable level and leads to efficient estimation. In this article, we propose a tensor regression model based on the more flexible Tucker decomposition. Compared to the CP model, Tucker regression model allows different number of factors along each mode. Such flexibility leads to several advantages that are particularly suited to neuroimaging analysis, including further reduction of the number of free parameters, accommodation of images with skewed dimensions, explicit modeling of interactions, and a principled way of image downsizing. We also compare the Tucker model with CP numerically on both simulated data and real magnetic resonance imaging data, and demonstrate its effectiveness in finite sample performance. More... »

PAGES

520-545

References to SciGraph publications

  • 1994. Block-relaxation Algorithms in Statistics in INFORMATION SYSTEMS AND DATA ANALYSIS
  • 2010. Numerical Analysis for Statisticians in NONE
  • 1966-09. Some mathematical notes on three-mode factor analysis in PSYCHOMETRIKA
  • 1983. Generalized Linear Models in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12561-018-9215-6

    DOI

    http://dx.doi.org/10.1007/s12561-018-9215-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1101376631


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Wells Fargo & Company, 28202, Charlotte, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Xiaoshan", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California, Berkeley", 
              "id": "https://www.grid.ac/institutes/grid.47840.3f", 
              "name": [
                "Division of Biostatistics, University of California, 94720, Berkeley, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xu", 
            "givenName": "Da", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California Los Angeles", 
              "id": "https://www.grid.ac/institutes/grid.19006.3e", 
              "name": [
                "University of California, Los Angeles, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhou", 
            "givenName": "Hua", 
            "id": "sg:person.01204110122.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204110122.82"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California, Berkeley", 
              "id": "https://www.grid.ac/institutes/grid.47840.3f", 
              "name": [
                "Division of Biostatistics, University of California, 94720, Berkeley, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Lexin", 
            "id": "sg:person.01035510332.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035510332.12"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02289464", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002217813", 
              "https://doi.org/10.1007/bf02289464"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02289464", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002217813", 
              "https://doi.org/10.1007/bf02289464"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-46808-7_28", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009070277", 
              "https://doi.org/10.1007/978-3-642-46808-7_28"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2010.02.081", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010278695"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4419-5945-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019309908", 
              "https://doi.org/10.1007/978-1-4419-5945-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4419-5945-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019309908", 
              "https://doi.org/10.1007/978-1-4419-5945-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/rssb.12031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028102718"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-9868.2005.00503.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043971564"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1541-0420.2009.01233.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050370445"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-9868.2010.00767.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052365035"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00401706.1993.10485033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058286776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.2013.776499", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058306037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10618600.2012.743437", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058368847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/07070111x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062851534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s003614450037906x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062877747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1198/016214501753382273", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064197908"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/14-aoas736", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064394378"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/15-aoas818", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064394989"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1913267", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069640618"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/sii.2010.v3.n1.a1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072464105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1109705878", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4899-3244-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109705878", 
              "https://doi.org/10.1007/978-1-4899-3244-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4899-3244-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109705878", 
              "https://doi.org/10.1007/978-1-4899-3244-0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "Neuroimaging data often take the form of high-dimensional arrays, also known as tensors. Addressing scientific questions arising from such data demands new regression models that take multidimensional arrays as covariates. Simply turning an image array into a vector would both cause extremely high dimensionality and destroy the inherent spatial structure of the array. In a recent work, Zhou et al. (J Am Stat Assoc, 108(502):540\u2013552, 2013) proposed a family of generalized linear tensor regression models based upon the CP (CANDECOMP/PARAFAC) decomposition of regression coefficient array. Low-rank approximation brings the ultrahigh dimensionality to a manageable level and leads to efficient estimation. In this article, we propose a tensor regression model based on the more flexible Tucker decomposition. Compared to the CP model, Tucker regression model allows different number of factors along each mode. Such flexibility leads to several advantages that are particularly suited to neuroimaging analysis, including further reduction of the number of free parameters, accommodation of images with skewed dimensions, explicit modeling of interactions, and a principled way of image downsizing. We also compare the Tucker model with CP numerically on both simulated data and real magnetic resonance imaging data, and demonstrate its effectiveness in finite sample performance.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s12561-018-9215-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3485204", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5542669", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1041137", 
            "issn": [
              "1867-1764", 
              "1867-1772"
            ], 
            "name": "Statistics in Biosciences", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "name": "Tucker Tensor Regression and Neuroimaging Analysis", 
        "pagination": "520-545", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b8311b093b1c5797fc17c8db26721555179096795b6f271e93bcbf7b16f16109"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12561-018-9215-6"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1101376631"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12561-018-9215-6", 
          "https://app.dimensions.ai/details/publication/pub.1101376631"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T11:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000353_0000000353/records_45335_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs12561-018-9215-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12561-018-9215-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12561-018-9215-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12561-018-9215-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12561-018-9215-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    152 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12561-018-9215-6 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N6e277847afa646ac87089be26b149410
    4 schema:citation sg:pub.10.1007/978-1-4419-5945-4
    5 sg:pub.10.1007/978-1-4899-3244-0
    6 sg:pub.10.1007/978-3-642-46808-7_28
    7 sg:pub.10.1007/bf02289464
    8 https://app.dimensions.ai/details/publication/pub.1109705878
    9 https://doi.org/10.1016/j.neuroimage.2010.02.081
    10 https://doi.org/10.1080/00401706.1993.10485033
    11 https://doi.org/10.1080/01621459.2013.776499
    12 https://doi.org/10.1080/10618600.2012.743437
    13 https://doi.org/10.1111/j.1467-9868.2005.00503.x
    14 https://doi.org/10.1111/j.1467-9868.2010.00767.x
    15 https://doi.org/10.1111/j.1541-0420.2009.01233.x
    16 https://doi.org/10.1111/rssb.12031
    17 https://doi.org/10.1137/07070111x
    18 https://doi.org/10.1137/s003614450037906x
    19 https://doi.org/10.1198/016214501753382273
    20 https://doi.org/10.1214/14-aoas736
    21 https://doi.org/10.1214/15-aoas818
    22 https://doi.org/10.2307/1913267
    23 https://doi.org/10.4310/sii.2010.v3.n1.a1
    24 schema:datePublished 2018-12
    25 schema:datePublishedReg 2018-12-01
    26 schema:description Neuroimaging data often take the form of high-dimensional arrays, also known as tensors. Addressing scientific questions arising from such data demands new regression models that take multidimensional arrays as covariates. Simply turning an image array into a vector would both cause extremely high dimensionality and destroy the inherent spatial structure of the array. In a recent work, Zhou et al. (J Am Stat Assoc, 108(502):540–552, 2013) proposed a family of generalized linear tensor regression models based upon the CP (CANDECOMP/PARAFAC) decomposition of regression coefficient array. Low-rank approximation brings the ultrahigh dimensionality to a manageable level and leads to efficient estimation. In this article, we propose a tensor regression model based on the more flexible Tucker decomposition. Compared to the CP model, Tucker regression model allows different number of factors along each mode. Such flexibility leads to several advantages that are particularly suited to neuroimaging analysis, including further reduction of the number of free parameters, accommodation of images with skewed dimensions, explicit modeling of interactions, and a principled way of image downsizing. We also compare the Tucker model with CP numerically on both simulated data and real magnetic resonance imaging data, and demonstrate its effectiveness in finite sample performance.
    27 schema:genre research_article
    28 schema:inLanguage en
    29 schema:isAccessibleForFree false
    30 schema:isPartOf N46a2aa30ae2f44098f767dfbbec986c6
    31 N8812d759ca6049f9b9a660ce16df7b2b
    32 sg:journal.1041137
    33 schema:name Tucker Tensor Regression and Neuroimaging Analysis
    34 schema:pagination 520-545
    35 schema:productId N1b58ffa4272345948114d19b5bde8bc8
    36 N25970fde81cb4325933bdd7f1b0af954
    37 Ndb9121f644df4acb884ac391d019397c
    38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101376631
    39 https://doi.org/10.1007/s12561-018-9215-6
    40 schema:sdDatePublished 2019-04-11T11:08
    41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    42 schema:sdPublisher N2190923180834e508af4b7ad1b9143c4
    43 schema:url https://link.springer.com/10.1007%2Fs12561-018-9215-6
    44 sgo:license sg:explorer/license/
    45 sgo:sdDataset articles
    46 rdf:type schema:ScholarlyArticle
    47 N17cc98a7ca55475c91f3e51e7a4602a8 schema:affiliation N5f756db9b51b46d1adab88929d75c71a
    48 schema:familyName Li
    49 schema:givenName Xiaoshan
    50 rdf:type schema:Person
    51 N1b58ffa4272345948114d19b5bde8bc8 schema:name doi
    52 schema:value 10.1007/s12561-018-9215-6
    53 rdf:type schema:PropertyValue
    54 N2190923180834e508af4b7ad1b9143c4 schema:name Springer Nature - SN SciGraph project
    55 rdf:type schema:Organization
    56 N25970fde81cb4325933bdd7f1b0af954 schema:name readcube_id
    57 schema:value b8311b093b1c5797fc17c8db26721555179096795b6f271e93bcbf7b16f16109
    58 rdf:type schema:PropertyValue
    59 N46a2aa30ae2f44098f767dfbbec986c6 schema:volumeNumber 10
    60 rdf:type schema:PublicationVolume
    61 N5f756db9b51b46d1adab88929d75c71a schema:name Wells Fargo & Company, 28202, Charlotte, USA
    62 rdf:type schema:Organization
    63 N6e277847afa646ac87089be26b149410 rdf:first N17cc98a7ca55475c91f3e51e7a4602a8
    64 rdf:rest Na595044d628d44fe90b4c3cb6d358f48
    65 N759ae8dae806473cb7bfd83ad0dddf84 rdf:first sg:person.01035510332.12
    66 rdf:rest rdf:nil
    67 N8812d759ca6049f9b9a660ce16df7b2b schema:issueNumber 3
    68 rdf:type schema:PublicationIssue
    69 Na595044d628d44fe90b4c3cb6d358f48 rdf:first Nff4c0d0d734d4bcd9e1532767efd5f67
    70 rdf:rest Nf7cb0af3fc394867b37334380d74ff14
    71 Ndb9121f644df4acb884ac391d019397c schema:name dimensions_id
    72 schema:value pub.1101376631
    73 rdf:type schema:PropertyValue
    74 Nf7cb0af3fc394867b37334380d74ff14 rdf:first sg:person.01204110122.82
    75 rdf:rest N759ae8dae806473cb7bfd83ad0dddf84
    76 Nff4c0d0d734d4bcd9e1532767efd5f67 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
    77 schema:familyName Xu
    78 schema:givenName Da
    79 rdf:type schema:Person
    80 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Information and Computing Sciences
    82 rdf:type schema:DefinedTerm
    83 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Artificial Intelligence and Image Processing
    85 rdf:type schema:DefinedTerm
    86 sg:grant.3485204 http://pending.schema.org/fundedItem sg:pub.10.1007/s12561-018-9215-6
    87 rdf:type schema:MonetaryGrant
    88 sg:grant.5542669 http://pending.schema.org/fundedItem sg:pub.10.1007/s12561-018-9215-6
    89 rdf:type schema:MonetaryGrant
    90 sg:journal.1041137 schema:issn 1867-1764
    91 1867-1772
    92 schema:name Statistics in Biosciences
    93 rdf:type schema:Periodical
    94 sg:person.01035510332.12 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
    95 schema:familyName Li
    96 schema:givenName Lexin
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035510332.12
    98 rdf:type schema:Person
    99 sg:person.01204110122.82 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
    100 schema:familyName Zhou
    101 schema:givenName Hua
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204110122.82
    103 rdf:type schema:Person
    104 sg:pub.10.1007/978-1-4419-5945-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019309908
    105 https://doi.org/10.1007/978-1-4419-5945-4
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/978-1-4899-3244-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705878
    108 https://doi.org/10.1007/978-1-4899-3244-0
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/978-3-642-46808-7_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009070277
    111 https://doi.org/10.1007/978-3-642-46808-7_28
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/bf02289464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002217813
    114 https://doi.org/10.1007/bf02289464
    115 rdf:type schema:CreativeWork
    116 https://app.dimensions.ai/details/publication/pub.1109705878 schema:CreativeWork
    117 https://doi.org/10.1016/j.neuroimage.2010.02.081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010278695
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1080/00401706.1993.10485033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058286776
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1080/01621459.2013.776499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058306037
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1080/10618600.2012.743437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058368847
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1111/j.1467-9868.2005.00503.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043971564
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1111/j.1467-9868.2010.00767.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052365035
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1111/j.1541-0420.2009.01233.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050370445
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1111/rssb.12031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028102718
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1137/07070111x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062851534
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1137/s003614450037906x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062877747
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1198/016214501753382273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064197908
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1214/14-aoas736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064394378
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1214/15-aoas818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064394989
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.2307/1913267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069640618
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.4310/sii.2010.v3.n1.a1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072464105
    146 rdf:type schema:CreativeWork
    147 https://www.grid.ac/institutes/grid.19006.3e schema:alternateName University of California Los Angeles
    148 schema:name University of California, Los Angeles, USA
    149 rdf:type schema:Organization
    150 https://www.grid.ac/institutes/grid.47840.3f schema:alternateName University of California, Berkeley
    151 schema:name Division of Biostatistics, University of California, 94720, Berkeley, USA
    152 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...