Measuring Variability in Rest-Activity Rhythms from Actigraphy with Application to Characterizing Symptoms of Depression View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01-05

AUTHORS

Robert T. Krafty, Haoyi Fu, Jessica L. Graves, Scott A. Bruce, Martica H. Hall, Stephen F. Smagula

ABSTRACT

The twenty-four hour sleep-wake pattern known as the rest-activity rhythm (RAR) is associated with many aspects of health and well-being. Researchers have utilized a number of interpretable, person-specific RAR measures that can be estimated from actigraphy. Actigraphs are wearable devices that dynamically record acceleration and provide indirect measures of physical activity over time. One class of useful RAR measures are those that quantify variability around a mean circadian pattern. However, current parametric and non-parametric RAR measures used by applied researchers can only quantify variability from a limited or undefined number of rhythmic sources. The primary goal of this article is to consider a new measure of RAR variability: the log-power spectrum of stochastic error around a circadian mean. This functional measure quantifies the relative contributions of variability about a circadian mean from all possibly frequencies, including weekly, daily, and high-frequency sources of variation. It can be estimated through a two-stage procedure that smooths the log-periodogram of residuals after estimating a circadian mean. The development of this measure was motivated by a study of depression in older adults and revealed that slow, rhythmic variations in activity from a circadian pattern are correlated with depression symptoms. More... »

PAGES

1-20

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12561-018-09230-2

DOI

http://dx.doi.org/10.1007/s12561-018-09230-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111162133


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Pittsburgh", 
          "id": "https://www.grid.ac/institutes/grid.21925.3d", 
          "name": [
            "Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krafty", 
        "givenName": "Robert T.", 
        "id": "sg:person.01313060234.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313060234.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Pittsburgh", 
          "id": "https://www.grid.ac/institutes/grid.21925.3d", 
          "name": [
            "Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fu", 
        "givenName": "Haoyi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Pittsburgh", 
          "id": "https://www.grid.ac/institutes/grid.21925.3d", 
          "name": [
            "Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Graves", 
        "givenName": "Jessica L.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "George Mason University", 
          "id": "https://www.grid.ac/institutes/grid.22448.38", 
          "name": [
            "Department of Statistics, George Mason University, Fairfax, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bruce", 
        "givenName": "Scott A.", 
        "id": "sg:person.015651206047.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015651206047.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Pittsburgh", 
          "id": "https://www.grid.ac/institutes/grid.21925.3d", 
          "name": [
            "Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hall", 
        "givenName": "Martica H.", 
        "id": "sg:person.012632451507.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012632451507.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Pittsburgh", 
          "id": "https://www.grid.ac/institutes/grid.21925.3d", 
          "name": [
            "Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smagula", 
        "givenName": "Stephen F.", 
        "id": "sg:person.01140600046.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140600046.39"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.slsci.2014.09.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007067278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2010.00749.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009149692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2010.00749.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009149692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.2466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010718347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.2466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010718347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-444-53858-1.00013-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011534241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1249/mss.0b013e31815a51b3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024501743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1249/mss.0b013e31815a51b3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024501743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/yco.0000000000000283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024625779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/yco.0000000000000283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024625779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/08-aoas185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025425392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jad.2013.04.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032697993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1033283351", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-7865-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033283351", 
          "https://doi.org/10.1007/978-1-4419-7865-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-7865-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033283351", 
          "https://doi.org/10.1007/978-1-4419-7865-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-5369-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034494601", 
          "https://doi.org/10.1007/978-1-4614-5369-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-5369-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034494601", 
          "https://doi.org/10.1007/978-1-4614-5369-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0006-3223(95)00370-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034716981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02293986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039396725", 
          "https://doi.org/10.1007/bf02293986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02293986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039396725", 
          "https://doi.org/10.1007/bf02293986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1186/1740-3391-9-11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040321772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/biom.12278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040860583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00648343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041215607", 
          "https://doi.org/10.1007/bf00648343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00648343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041215607", 
          "https://doi.org/10.1007/bf00648343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jnnp.23.1.56", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042824373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.6038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045202795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02590998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050005701", 
          "https://doi.org/10.1007/bf02590998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1980.10477441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058302264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1994.10476785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058304649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.2015.1016225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058306365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/ass088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059422053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/kxu045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059424674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/78.330372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061228891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214506000000465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5665/sleep.2088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073065554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/sleep/26.3.342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075286968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511546396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109393888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1991.tb01821.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110458676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1991.tb01821.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110458676"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01-05", 
    "datePublishedReg": "2019-01-05", 
    "description": "The twenty-four hour sleep-wake pattern known as the rest-activity rhythm (RAR) is associated with many aspects of health and well-being. Researchers have utilized a number of interpretable, person-specific RAR measures that can be estimated from actigraphy. Actigraphs are wearable devices that dynamically record acceleration and provide indirect measures of physical activity over time. One class of useful RAR measures are those that quantify variability around a mean circadian pattern. However, current parametric and non-parametric RAR measures used by applied researchers can only quantify variability from a limited or undefined number of rhythmic sources. The primary goal of this article is to consider a new measure of RAR variability: the log-power spectrum of stochastic error around a circadian mean. This functional measure quantifies the relative contributions of variability about a circadian mean from all possibly frequencies, including weekly, daily, and high-frequency sources of variation. It can be estimated through a two-stage procedure that smooths the log-periodogram of residuals after estimating a circadian mean. The development of this measure was motivated by a study of depression in older adults and revealed that slow, rhythmic variations in activity from a circadian pattern are correlated with depression symptoms.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12561-018-09230-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3804856", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6617960", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1041137", 
        "issn": [
          "1867-1764", 
          "1867-1772"
        ], 
        "name": "Statistics in Biosciences", 
        "type": "Periodical"
      }
    ], 
    "name": "Measuring Variability in Rest-Activity Rhythms from Actigraphy with Application to Characterizing Symptoms of Depression", 
    "pagination": "1-20", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "faea273a18033241f3925bbdfde4da2c4c61699d9692ecf3cfa4aba0ac56569d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12561-018-09230-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111162133"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12561-018-09230-2", 
      "https://app.dimensions.ai/details/publication/pub.1111162133"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000311_0000000311/records_55466_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12561-018-09230-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12561-018-09230-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12561-018-09230-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12561-018-09230-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12561-018-09230-2'


 

This table displays all metadata directly associated to this object as RDF triples.

191 TRIPLES      21 PREDICATES      54 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12561-018-09230-2 schema:about anzsrc-for:11
2 anzsrc-for:1117
3 schema:author N9bdfa5e8a1244cc1a7ae655ef096075f
4 schema:citation sg:pub.10.1007/978-1-4419-7865-3
5 sg:pub.10.1007/978-1-4614-5369-7
6 sg:pub.10.1007/bf00648343
7 sg:pub.10.1007/bf02293986
8 sg:pub.10.1007/bf02590998
9 https://app.dimensions.ai/details/publication/pub.1033283351
10 https://doi.org/10.1002/sim.2466
11 https://doi.org/10.1002/sim.6038
12 https://doi.org/10.1016/0006-3223(95)00370-3
13 https://doi.org/10.1016/b978-0-444-53858-1.00013-2
14 https://doi.org/10.1016/j.jad.2013.04.028
15 https://doi.org/10.1016/j.slsci.2014.09.013
16 https://doi.org/10.1017/cbo9780511546396
17 https://doi.org/10.1080/01621459.1980.10477441
18 https://doi.org/10.1080/01621459.1994.10476785
19 https://doi.org/10.1080/01621459.2015.1016225
20 https://doi.org/10.1093/biomet/ass088
21 https://doi.org/10.1093/biostatistics/kxu045
22 https://doi.org/10.1093/sleep/26.3.342
23 https://doi.org/10.1097/yco.0000000000000283
24 https://doi.org/10.1109/78.330372
25 https://doi.org/10.1111/biom.12278
26 https://doi.org/10.1111/j.1467-9868.2010.00749.x
27 https://doi.org/10.1111/j.2517-6161.1991.tb01821.x
28 https://doi.org/10.1136/jnnp.23.1.56
29 https://doi.org/10.1186/1740-3391-9-11
30 https://doi.org/10.1198/016214506000000465
31 https://doi.org/10.1214/08-aoas185
32 https://doi.org/10.1249/mss.0b013e31815a51b3
33 https://doi.org/10.5665/sleep.2088
34 schema:datePublished 2019-01-05
35 schema:datePublishedReg 2019-01-05
36 schema:description The twenty-four hour sleep-wake pattern known as the rest-activity rhythm (RAR) is associated with many aspects of health and well-being. Researchers have utilized a number of interpretable, person-specific RAR measures that can be estimated from actigraphy. Actigraphs are wearable devices that dynamically record acceleration and provide indirect measures of physical activity over time. One class of useful RAR measures are those that quantify variability around a mean circadian pattern. However, current parametric and non-parametric RAR measures used by applied researchers can only quantify variability from a limited or undefined number of rhythmic sources. The primary goal of this article is to consider a new measure of RAR variability: the log-power spectrum of stochastic error around a circadian mean. This functional measure quantifies the relative contributions of variability about a circadian mean from all possibly frequencies, including weekly, daily, and high-frequency sources of variation. It can be estimated through a two-stage procedure that smooths the log-periodogram of residuals after estimating a circadian mean. The development of this measure was motivated by a study of depression in older adults and revealed that slow, rhythmic variations in activity from a circadian pattern are correlated with depression symptoms.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf sg:journal.1041137
41 schema:name Measuring Variability in Rest-Activity Rhythms from Actigraphy with Application to Characterizing Symptoms of Depression
42 schema:pagination 1-20
43 schema:productId N54fc0a2c0a9f4ac5bb254ebc829c55d0
44 N77f0d3683acb4b8e9559b4e703d4900a
45 N9dce5a6c6a0648bb8e4890b9d66a1c7c
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111162133
47 https://doi.org/10.1007/s12561-018-09230-2
48 schema:sdDatePublished 2019-04-11T08:34
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N462d7076705d40e5a0de93ff14444144
51 schema:url https://link.springer.com/10.1007%2Fs12561-018-09230-2
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N101b3b7ec19449f4bf3f910ca0445844 rdf:first sg:person.012632451507.29
56 rdf:rest N6d59d6939b354499a92c746dc4b6016c
57 N2dc64f6eb8dd46ed97115fd90480163b schema:affiliation https://www.grid.ac/institutes/grid.21925.3d
58 schema:familyName Fu
59 schema:givenName Haoyi
60 rdf:type schema:Person
61 N462d7076705d40e5a0de93ff14444144 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N4eef2ae0469b4b87aad15b2724280626 rdf:first sg:person.015651206047.30
64 rdf:rest N101b3b7ec19449f4bf3f910ca0445844
65 N54fc0a2c0a9f4ac5bb254ebc829c55d0 schema:name dimensions_id
66 schema:value pub.1111162133
67 rdf:type schema:PropertyValue
68 N5e706b08fb9e49d887dc59a8b8937f72 rdf:first N2dc64f6eb8dd46ed97115fd90480163b
69 rdf:rest Nde6e90094b62410c851587400d3cb6a6
70 N6d59d6939b354499a92c746dc4b6016c rdf:first sg:person.01140600046.39
71 rdf:rest rdf:nil
72 N77f0d3683acb4b8e9559b4e703d4900a schema:name readcube_id
73 schema:value faea273a18033241f3925bbdfde4da2c4c61699d9692ecf3cfa4aba0ac56569d
74 rdf:type schema:PropertyValue
75 N8ac075a73a9b4edd9ef94b3a3995fb21 schema:affiliation https://www.grid.ac/institutes/grid.21925.3d
76 schema:familyName Graves
77 schema:givenName Jessica L.
78 rdf:type schema:Person
79 N9bdfa5e8a1244cc1a7ae655ef096075f rdf:first sg:person.01313060234.20
80 rdf:rest N5e706b08fb9e49d887dc59a8b8937f72
81 N9dce5a6c6a0648bb8e4890b9d66a1c7c schema:name doi
82 schema:value 10.1007/s12561-018-09230-2
83 rdf:type schema:PropertyValue
84 Nde6e90094b62410c851587400d3cb6a6 rdf:first N8ac075a73a9b4edd9ef94b3a3995fb21
85 rdf:rest N4eef2ae0469b4b87aad15b2724280626
86 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
87 schema:name Medical and Health Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
90 schema:name Public Health and Health Services
91 rdf:type schema:DefinedTerm
92 sg:grant.3804856 http://pending.schema.org/fundedItem sg:pub.10.1007/s12561-018-09230-2
93 rdf:type schema:MonetaryGrant
94 sg:grant.6617960 http://pending.schema.org/fundedItem sg:pub.10.1007/s12561-018-09230-2
95 rdf:type schema:MonetaryGrant
96 sg:journal.1041137 schema:issn 1867-1764
97 1867-1772
98 schema:name Statistics in Biosciences
99 rdf:type schema:Periodical
100 sg:person.01140600046.39 schema:affiliation https://www.grid.ac/institutes/grid.21925.3d
101 schema:familyName Smagula
102 schema:givenName Stephen F.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140600046.39
104 rdf:type schema:Person
105 sg:person.012632451507.29 schema:affiliation https://www.grid.ac/institutes/grid.21925.3d
106 schema:familyName Hall
107 schema:givenName Martica H.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012632451507.29
109 rdf:type schema:Person
110 sg:person.01313060234.20 schema:affiliation https://www.grid.ac/institutes/grid.21925.3d
111 schema:familyName Krafty
112 schema:givenName Robert T.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313060234.20
114 rdf:type schema:Person
115 sg:person.015651206047.30 schema:affiliation https://www.grid.ac/institutes/grid.22448.38
116 schema:familyName Bruce
117 schema:givenName Scott A.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015651206047.30
119 rdf:type schema:Person
120 sg:pub.10.1007/978-1-4419-7865-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033283351
121 https://doi.org/10.1007/978-1-4419-7865-3
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/978-1-4614-5369-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034494601
124 https://doi.org/10.1007/978-1-4614-5369-7
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/bf00648343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041215607
127 https://doi.org/10.1007/bf00648343
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/bf02293986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039396725
130 https://doi.org/10.1007/bf02293986
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/bf02590998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050005701
133 https://doi.org/10.1007/bf02590998
134 rdf:type schema:CreativeWork
135 https://app.dimensions.ai/details/publication/pub.1033283351 schema:CreativeWork
136 https://doi.org/10.1002/sim.2466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010718347
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1002/sim.6038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045202795
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/0006-3223(95)00370-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034716981
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/b978-0-444-53858-1.00013-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011534241
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.jad.2013.04.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032697993
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.slsci.2014.09.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007067278
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1017/cbo9780511546396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109393888
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1080/01621459.1980.10477441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058302264
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1080/01621459.1994.10476785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304649
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1080/01621459.2015.1016225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058306365
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1093/biomet/ass088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059422053
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1093/biostatistics/kxu045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059424674
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1093/sleep/26.3.342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075286968
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1097/yco.0000000000000283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024625779
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/78.330372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061228891
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1111/biom.12278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040860583
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1111/j.1467-9868.2010.00749.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009149692
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1111/j.2517-6161.1991.tb01821.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1110458676
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1136/jnnp.23.1.56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042824373
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1186/1740-3391-9-11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040321772
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1198/016214506000000465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198516
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1214/08-aoas185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025425392
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1249/mss.0b013e31815a51b3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024501743
181 rdf:type schema:CreativeWork
182 https://doi.org/10.5665/sleep.2088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073065554
183 rdf:type schema:CreativeWork
184 https://www.grid.ac/institutes/grid.21925.3d schema:alternateName University of Pittsburgh
185 schema:name Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
186 Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
187 Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
188 rdf:type schema:Organization
189 https://www.grid.ac/institutes/grid.22448.38 schema:alternateName George Mason University
190 schema:name Department of Statistics, George Mason University, Fairfax, VA, USA
191 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...