Practical Considerations for Data Collection and Management in Mobile Health Micro-randomized Trials View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-01-05

AUTHORS

Nicholas J. Seewald, Shawna N. Smith, Andy Jinseok Lee, Predrag Klasnja, Susan A. Murphy

ABSTRACT

There is a growing interest in leveraging the prevalence of mobile technology to improve health by delivering momentary, contextualized interventions to individuals’ smartphones. A just-in-time adaptive intervention (JITAI) adjusts to an individual’s changing state and/or context to provide the right treatment, at the right time, in the right place. Micro-randomized trials (MRTs) allow for the collection of data which aid in the construction of an optimized JITAI by sequentially randomizing participants to different treatment options at each of many decision points throughout the study. Often, these data are collected passively using a mobile phone. To assess the causal effect of treatment on a near-term outcome, care must be taken when designing the data collection system to ensure it is of appropriately high quality. Here, we make several recommendations for collecting and managing data from an MRT. We provide advice on selecting which features to collect and when, choosing between “agents” to implement randomization, identifying sources of missing data, and overcoming other novel challenges. The recommendations are informed by our experience with HeartSteps, an MRT designed to test the effects of an intervention aimed at increasing physical activity in sedentary adults. We also provide a checklist which can be used in designing a data collection system so that scientists can focus more on their questions of interest, and less on cleaning data. More... »

PAGES

1-16

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12561-018-09228-w

DOI

http://dx.doi.org/10.1007/s12561-018-09228-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111157645


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Statistics, University of Michigan, 311 West Hall, 1085 South University Ave, 48109, Ann Arbor, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seewald", 
        "givenName": "Nicholas J.", 
        "id": "sg:person.01102721711.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102721711.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Departments of Psychiatry and General Medicine, University of Michigan, Ann Arbor, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smith", 
        "givenName": "Shawna N.", 
        "id": "sg:person.012274657735.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012274657735.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "School of Information, University of Michigan, Ann Arbor, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Andy Jinseok", 
        "id": "sg:person.015734326245.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015734326245.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "School of Information, University of Michigan, Ann Arbor, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klasnja", 
        "givenName": "Predrag", 
        "id": "sg:person.01243174770.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243174770.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Departments of Statistics and Computer Science, Harvard University, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Murphy", 
        "givenName": "Susan A.", 
        "id": "sg:person.0670246324.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670246324.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1037/hea0000305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011007809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1978942.1978945", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013409681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12160-016-9830-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014303718", 
          "https://doi.org/10.1007/s12160-016-9830-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12160-016-9830-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014303718", 
          "https://doi.org/10.1007/s12160-016-9830-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amjmed.2013.04.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018479563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13679-015-0183-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022027270", 
          "https://doi.org/10.1007/s13679-015-0183-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpp.1855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031368274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apgeog.2015.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031932914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10916-014-0181-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036304376", 
          "https://doi.org/10.1007/s10916-014-0181-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1476-072x-7-45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039401148", 
          "https://doi.org/10.1186/1476-072x-7-45"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amepre.2013.03.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043576253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.6847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048572142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/63.3.581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059418581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mc.2012.392", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061388790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1559827610387255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064063770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1559827610387255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064063770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.2017.1305274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084157908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.2017.1305274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084157908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.2017.1305274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084157908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2196/mhealth.7870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090397426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-51394-2_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090652695", 
          "https://doi.org/10.1007/978-3-319-51394-2_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/comsnets.2011.5716518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094930882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2981697", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103090123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2981697", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103090123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/abm/kay067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106711331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/abm/kay067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106711331"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01-05", 
    "datePublishedReg": "2019-01-05", 
    "description": "There is a growing interest in leveraging the prevalence of mobile technology to improve health by delivering momentary, contextualized interventions to individuals\u2019 smartphones. A just-in-time adaptive intervention (JITAI) adjusts to an individual\u2019s changing state and/or context to provide the right treatment, at the right time, in the right place. Micro-randomized trials (MRTs) allow for the collection of data which aid in the construction of an optimized JITAI by sequentially randomizing participants to different treatment options at each of many decision points throughout the study. Often, these data are collected passively using a mobile phone. To assess the causal effect of treatment on a near-term outcome, care must be taken when designing the data collection system to ensure it is of appropriately high quality. Here, we make several recommendations for collecting and managing data from an MRT. We provide advice on selecting which features to collect and when, choosing between \u201cagents\u201d to implement randomization, identifying sources of missing data, and overcoming other novel challenges. The recommendations are informed by our experience with HeartSteps, an MRT designed to test the effects of an intervention aimed at increasing physical activity in sedentary adults. We also provide a checklist which can be used in designing a data collection system so that scientists can focus more on their questions of interest, and less on cleaning data.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12561-018-09228-w", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4244490", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4242782", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3860229", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3859175", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1041137", 
        "issn": [
          "1867-1764", 
          "1867-1772"
        ], 
        "name": "Statistics in Biosciences", 
        "type": "Periodical"
      }
    ], 
    "name": "Practical Considerations for Data Collection and Management in Mobile Health Micro-randomized Trials", 
    "pagination": "1-16", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "19dfb1d921afcc7e4c2a18b1fa2348d2e5dbd0f1d5d504652a1ea1ee63ee9b24"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12561-018-09228-w"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111157645"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12561-018-09228-w", 
      "https://app.dimensions.ai/details/publication/pub.1111157645"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000311_0000000311/records_55484_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12561-018-09228-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12561-018-09228-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12561-018-09228-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12561-018-09228-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12561-018-09228-w'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      21 PREDICATES      44 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12561-018-09228-w schema:about anzsrc-for:11
2 anzsrc-for:1117
3 schema:author Na23d83c0bf8d4e6dbdb33c3ca3d007f9
4 schema:citation sg:pub.10.1007/978-3-319-51394-2_4
5 sg:pub.10.1007/s10916-014-0181-3
6 sg:pub.10.1007/s12160-016-9830-8
7 sg:pub.10.1007/s13679-015-0183-6
8 sg:pub.10.1186/1476-072x-7-45
9 https://doi.org/10.1002/cpp.1855
10 https://doi.org/10.1002/sim.6847
11 https://doi.org/10.1016/j.amepre.2013.03.017
12 https://doi.org/10.1016/j.amjmed.2013.04.016
13 https://doi.org/10.1016/j.apgeog.2015.07.001
14 https://doi.org/10.1037/hea0000305
15 https://doi.org/10.1080/01621459.2017.1305274
16 https://doi.org/10.1093/abm/kay067
17 https://doi.org/10.1093/biomet/63.3.581
18 https://doi.org/10.1109/comsnets.2011.5716518
19 https://doi.org/10.1109/mc.2012.392
20 https://doi.org/10.1145/1978942.1978945
21 https://doi.org/10.1177/1559827610387255
22 https://doi.org/10.2196/mhealth.7870
23 https://doi.org/10.2307/2981697
24 schema:datePublished 2019-01-05
25 schema:datePublishedReg 2019-01-05
26 schema:description There is a growing interest in leveraging the prevalence of mobile technology to improve health by delivering momentary, contextualized interventions to individuals’ smartphones. A just-in-time adaptive intervention (JITAI) adjusts to an individual’s changing state and/or context to provide the right treatment, at the right time, in the right place. Micro-randomized trials (MRTs) allow for the collection of data which aid in the construction of an optimized JITAI by sequentially randomizing participants to different treatment options at each of many decision points throughout the study. Often, these data are collected passively using a mobile phone. To assess the causal effect of treatment on a near-term outcome, care must be taken when designing the data collection system to ensure it is of appropriately high quality. Here, we make several recommendations for collecting and managing data from an MRT. We provide advice on selecting which features to collect and when, choosing between “agents” to implement randomization, identifying sources of missing data, and overcoming other novel challenges. The recommendations are informed by our experience with HeartSteps, an MRT designed to test the effects of an intervention aimed at increasing physical activity in sedentary adults. We also provide a checklist which can be used in designing a data collection system so that scientists can focus more on their questions of interest, and less on cleaning data.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree true
30 schema:isPartOf sg:journal.1041137
31 schema:name Practical Considerations for Data Collection and Management in Mobile Health Micro-randomized Trials
32 schema:pagination 1-16
33 schema:productId N1144364ad08d48aca5c98dd5ae42cd08
34 N77ec945e1dd44353b14f5b60559a94c1
35 N7c91aadfb38946368b1dbfd6838d3321
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111157645
37 https://doi.org/10.1007/s12561-018-09228-w
38 schema:sdDatePublished 2019-04-11T08:35
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher Nebb493bc288540259d817ea33768063e
41 schema:url https://link.springer.com/10.1007%2Fs12561-018-09228-w
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N1144364ad08d48aca5c98dd5ae42cd08 schema:name readcube_id
46 schema:value 19dfb1d921afcc7e4c2a18b1fa2348d2e5dbd0f1d5d504652a1ea1ee63ee9b24
47 rdf:type schema:PropertyValue
48 N3b80ea7683344f2aa0fecb6aca80f1df rdf:first sg:person.0670246324.42
49 rdf:rest rdf:nil
50 N77ec945e1dd44353b14f5b60559a94c1 schema:name dimensions_id
51 schema:value pub.1111157645
52 rdf:type schema:PropertyValue
53 N7c91aadfb38946368b1dbfd6838d3321 schema:name doi
54 schema:value 10.1007/s12561-018-09228-w
55 rdf:type schema:PropertyValue
56 Na23d83c0bf8d4e6dbdb33c3ca3d007f9 rdf:first sg:person.01102721711.82
57 rdf:rest Nb7ec56aaf8de4b0b94b1d82b2b8f86be
58 Nb7ec56aaf8de4b0b94b1d82b2b8f86be rdf:first sg:person.012274657735.45
59 rdf:rest Nc56546423db1436c903a3aaee159992b
60 Nc56546423db1436c903a3aaee159992b rdf:first sg:person.015734326245.06
61 rdf:rest Nef43fe9129124f0abbc6d2c388cc7924
62 Nebb493bc288540259d817ea33768063e schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 Nef43fe9129124f0abbc6d2c388cc7924 rdf:first sg:person.01243174770.03
65 rdf:rest N3b80ea7683344f2aa0fecb6aca80f1df
66 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
67 schema:name Medical and Health Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
70 schema:name Public Health and Health Services
71 rdf:type schema:DefinedTerm
72 sg:grant.3859175 http://pending.schema.org/fundedItem sg:pub.10.1007/s12561-018-09228-w
73 rdf:type schema:MonetaryGrant
74 sg:grant.3860229 http://pending.schema.org/fundedItem sg:pub.10.1007/s12561-018-09228-w
75 rdf:type schema:MonetaryGrant
76 sg:grant.4242782 http://pending.schema.org/fundedItem sg:pub.10.1007/s12561-018-09228-w
77 rdf:type schema:MonetaryGrant
78 sg:grant.4244490 http://pending.schema.org/fundedItem sg:pub.10.1007/s12561-018-09228-w
79 rdf:type schema:MonetaryGrant
80 sg:journal.1041137 schema:issn 1867-1764
81 1867-1772
82 schema:name Statistics in Biosciences
83 rdf:type schema:Periodical
84 sg:person.01102721711.82 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
85 schema:familyName Seewald
86 schema:givenName Nicholas J.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102721711.82
88 rdf:type schema:Person
89 sg:person.012274657735.45 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
90 schema:familyName Smith
91 schema:givenName Shawna N.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012274657735.45
93 rdf:type schema:Person
94 sg:person.01243174770.03 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
95 schema:familyName Klasnja
96 schema:givenName Predrag
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243174770.03
98 rdf:type schema:Person
99 sg:person.015734326245.06 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
100 schema:familyName Lee
101 schema:givenName Andy Jinseok
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015734326245.06
103 rdf:type schema:Person
104 sg:person.0670246324.42 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
105 schema:familyName Murphy
106 schema:givenName Susan A.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670246324.42
108 rdf:type schema:Person
109 sg:pub.10.1007/978-3-319-51394-2_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090652695
110 https://doi.org/10.1007/978-3-319-51394-2_4
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s10916-014-0181-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036304376
113 https://doi.org/10.1007/s10916-014-0181-3
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s12160-016-9830-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014303718
116 https://doi.org/10.1007/s12160-016-9830-8
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s13679-015-0183-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022027270
119 https://doi.org/10.1007/s13679-015-0183-6
120 rdf:type schema:CreativeWork
121 sg:pub.10.1186/1476-072x-7-45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039401148
122 https://doi.org/10.1186/1476-072x-7-45
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1002/cpp.1855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031368274
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1002/sim.6847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048572142
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.amepre.2013.03.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043576253
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.amjmed.2013.04.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018479563
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.apgeog.2015.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031932914
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1037/hea0000305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011007809
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1080/01621459.2017.1305274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084157908
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1093/abm/kay067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106711331
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1093/biomet/63.3.581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059418581
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/comsnets.2011.5716518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094930882
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/mc.2012.392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061388790
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1145/1978942.1978945 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013409681
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1177/1559827610387255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064063770
149 rdf:type schema:CreativeWork
150 https://doi.org/10.2196/mhealth.7870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090397426
151 rdf:type schema:CreativeWork
152 https://doi.org/10.2307/2981697 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103090123
153 rdf:type schema:CreativeWork
154 https://www.grid.ac/institutes/grid.214458.e schema:alternateName University of Michigan–Ann Arbor
155 schema:name Department of Statistics, University of Michigan, 311 West Hall, 1085 South University Ave, 48109, Ann Arbor, MI, USA
156 Departments of Psychiatry and General Medicine, University of Michigan, Ann Arbor, MI, USA
157 School of Information, University of Michigan, Ann Arbor, MI, USA
158 rdf:type schema:Organization
159 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
160 schema:name Departments of Statistics and Computer Science, Harvard University, Cambridge, MA, USA
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...