Assessment of Noninferiority (and Equivalence) for Simple Crossover Trials Using Bayesian Approach View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

Mingan Yang

ABSTRACT

To assess the noninferiority or equivalence of a general drug to a standard one, researchers generally use the odds ratio of patient response rates to evaluate the relative treatment efficacy. In this paper, we use a logistic random effects model to test noninferiority and equivalence based on the odds ratio of patient response rates for crossover trials with binary data. We use Bayesian sampling algorithm, data augmentation, and scaled mixture of normal representation to implement the approach and improve efficiency. The performance of the proposed approach is assessed via simulation and real data examples. More... »

PAGES

506-519

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12561-017-9209-9

DOI

http://dx.doi.org/10.1007/s12561-017-9209-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100463922


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "San Diego State University", 
          "id": "https://www.grid.ac/institutes/grid.263081.e", 
          "name": [
            "Division of Biostatistics and Epidemiology, Graduate School of Public Health, San Diego State University, San Diego, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Mingan", 
        "id": "sg:person.0655576375.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655576375.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.0006-341x.2004.00224.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000676622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jspi.2010.03.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003280735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.2706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012244854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bimj.4710200207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013986809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10543409808835238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014524055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.4244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016586802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.3771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019446999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.3771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019446999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ss/1177011136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029488311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bimj.4710350111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033700620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2014.07.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036946906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10543406.2010.544526", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038847105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.4166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053357084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1997.10474046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058305295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/56.1.75", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059417807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/74.3.646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059419735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/009286150003400225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063722788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/009286150003400225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063722788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2530969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069976438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0470854596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0470854596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0470854596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0470854596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471445428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471445428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2347622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101983397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2347622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101983397"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "To assess the noninferiority or equivalence of a general drug to a standard one, researchers generally use the odds ratio of patient response rates to evaluate the relative treatment efficacy. In this paper, we use a logistic random effects model to test noninferiority and equivalence based on the odds ratio of patient response rates for crossover trials with binary data. We use Bayesian sampling algorithm, data augmentation, and scaled mixture of normal representation to implement the approach and improve efficiency. The performance of the proposed approach is assessed via simulation and real data examples.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12561-017-9209-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041137", 
        "issn": [
          "1867-1764", 
          "1867-1772"
        ], 
        "name": "Statistics in Biosciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Assessment of Noninferiority (and Equivalence) for Simple Crossover Trials Using Bayesian Approach", 
    "pagination": "506-519", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "96a51ee0d08aa75727a176802d096a92a83088bf5a558d47166e544f5051d05b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12561-017-9209-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100463922"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12561-017-9209-9", 
      "https://app.dimensions.ai/details/publication/pub.1100463922"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000569.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12561-017-9209-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12561-017-9209-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12561-017-9209-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12561-017-9209-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12561-017-9209-9'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12561-017-9209-9 schema:about anzsrc-for:11
2 anzsrc-for:1117
3 schema:author Ne2d6af2de2b446d884d3502acb39c516
4 schema:citation https://doi.org/10.1002/0470854596
5 https://doi.org/10.1002/0471445428
6 https://doi.org/10.1002/bimj.4710200207
7 https://doi.org/10.1002/bimj.4710350111
8 https://doi.org/10.1002/sim.2706
9 https://doi.org/10.1002/sim.3771
10 https://doi.org/10.1002/sim.4166
11 https://doi.org/10.1002/sim.4244
12 https://doi.org/10.1016/j.csda.2014.07.017
13 https://doi.org/10.1016/j.jspi.2010.03.006
14 https://doi.org/10.1080/01621459.1997.10474046
15 https://doi.org/10.1080/10543406.2010.544526
16 https://doi.org/10.1080/10543409808835238
17 https://doi.org/10.1093/biomet/56.1.75
18 https://doi.org/10.1093/biomet/74.3.646
19 https://doi.org/10.1111/j.0006-341x.2004.00224.x
20 https://doi.org/10.1177/009286150003400225
21 https://doi.org/10.1214/ss/1177011136
22 https://doi.org/10.2307/2347622
23 https://doi.org/10.2307/2530969
24 schema:datePublished 2018-12
25 schema:datePublishedReg 2018-12-01
26 schema:description To assess the noninferiority or equivalence of a general drug to a standard one, researchers generally use the odds ratio of patient response rates to evaluate the relative treatment efficacy. In this paper, we use a logistic random effects model to test noninferiority and equivalence based on the odds ratio of patient response rates for crossover trials with binary data. We use Bayesian sampling algorithm, data augmentation, and scaled mixture of normal representation to implement the approach and improve efficiency. The performance of the proposed approach is assessed via simulation and real data examples.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf Nc9f68f8f5ff34aa2ac64ac67169f285e
31 Nfda50e3820ef490fbe4973682ff85cc0
32 sg:journal.1041137
33 schema:name Assessment of Noninferiority (and Equivalence) for Simple Crossover Trials Using Bayesian Approach
34 schema:pagination 506-519
35 schema:productId N430bce1058bd49dca2ff59db8055aa71
36 N7666341423be444392f416dad40f1bdf
37 N9fba735ead1e4c22a4d65a170174c78d
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100463922
39 https://doi.org/10.1007/s12561-017-9209-9
40 schema:sdDatePublished 2019-04-10T13:27
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher Nf388fb399ff84a359bbc5bbcc1c6f2e9
43 schema:url https://link.springer.com/10.1007%2Fs12561-017-9209-9
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N430bce1058bd49dca2ff59db8055aa71 schema:name readcube_id
48 schema:value 96a51ee0d08aa75727a176802d096a92a83088bf5a558d47166e544f5051d05b
49 rdf:type schema:PropertyValue
50 N7666341423be444392f416dad40f1bdf schema:name doi
51 schema:value 10.1007/s12561-017-9209-9
52 rdf:type schema:PropertyValue
53 N9fba735ead1e4c22a4d65a170174c78d schema:name dimensions_id
54 schema:value pub.1100463922
55 rdf:type schema:PropertyValue
56 Nc9f68f8f5ff34aa2ac64ac67169f285e schema:volumeNumber 10
57 rdf:type schema:PublicationVolume
58 Ne2d6af2de2b446d884d3502acb39c516 rdf:first sg:person.0655576375.29
59 rdf:rest rdf:nil
60 Nf388fb399ff84a359bbc5bbcc1c6f2e9 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 Nfda50e3820ef490fbe4973682ff85cc0 schema:issueNumber 3
63 rdf:type schema:PublicationIssue
64 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
65 schema:name Medical and Health Sciences
66 rdf:type schema:DefinedTerm
67 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
68 schema:name Public Health and Health Services
69 rdf:type schema:DefinedTerm
70 sg:journal.1041137 schema:issn 1867-1764
71 1867-1772
72 schema:name Statistics in Biosciences
73 rdf:type schema:Periodical
74 sg:person.0655576375.29 schema:affiliation https://www.grid.ac/institutes/grid.263081.e
75 schema:familyName Yang
76 schema:givenName Mingan
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655576375.29
78 rdf:type schema:Person
79 https://doi.org/10.1002/0470854596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661032
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1002/0471445428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661221
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1002/bimj.4710200207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013986809
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1002/bimj.4710350111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033700620
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1002/sim.2706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012244854
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1002/sim.3771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019446999
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1002/sim.4166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053357084
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1002/sim.4244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016586802
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.csda.2014.07.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036946906
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/j.jspi.2010.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003280735
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1080/01621459.1997.10474046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058305295
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1080/10543406.2010.544526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038847105
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1080/10543409808835238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014524055
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1093/biomet/56.1.75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059417807
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1093/biomet/74.3.646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059419735
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1111/j.0006-341x.2004.00224.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000676622
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1177/009286150003400225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063722788
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1214/ss/1177011136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029488311
114 rdf:type schema:CreativeWork
115 https://doi.org/10.2307/2347622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101983397
116 rdf:type schema:CreativeWork
117 https://doi.org/10.2307/2530969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069976438
118 rdf:type schema:CreativeWork
119 https://www.grid.ac/institutes/grid.263081.e schema:alternateName San Diego State University
120 schema:name Division of Biostatistics and Epidemiology, Graduate School of Public Health, San Diego State University, San Diego, CA, USA
121 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...