Multi-Region Risk-Sensitive Cognitive Ensembler for Accurate Detection of Attention-Deficit/Hyperactivity Disorder View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-30

AUTHORS

Vasily Sachnev, Sundaram Suresh, Narasimman Sundararajan, Belathur Suresh Mahanand, Muhammad W. Azeem, Saras Saraswathi

ABSTRACT

In this paper, we present a multi-region ensemble classifier approach (MRECA) using a cognitive ensemble of classifiers for accurate identification of attention-deficit/hyperactivity disorder (ADHD) subjects. This approach is developed using the features extracted from the structural MRIs of three different developing brain regions, viz., the amygdala, caudate, and hippocampus. For this study, the structural magnetic resonance imaging (sMRI) data provided by the ADHD-200 consortium has been used to identify the following three classes of ADHD, viz., ADHD-combined, ADHD-inattentive, and the TDC (typically developing control). From the sMRIs of the amygdala, caudate, and hippocampus regions of the brain from the ADHD-200 data, multiple feature sets were obtained using a feature-selecting genetic algorithm (FSGA), in a wraparound approach using an extreme learning machine (ELM) basic classifier. An improved crossover operator for the FSGA has been developed for obtaining higher accuracies compared with other existing crossover operators. From the multiple feature sets and the corresponding ELM classifiers, a classifier-selecting genetic algorithm (CSGA) has been developed to identify the top performing feature sets and their ELM classifiers. These classifiers are then combined using a risk-sensitive hinge loss function to form a risk-sensitive cognitive ensemble classifier resulting in a simultaneous multiclass classification of ADHD with higher accuracies. Performance evaluation of the multi-region ensemble classifier is presented under the following three scenarios, viz., region-based individual (best) classifier, region-based ensemble classifier, and finally a multiple-region-based ensemble classifier. The study results clearly indicate that the proposed “multi-region ensemble classification approach” (MRECA) achieves a much higher classification accuracy of ADHD data (normally a difficult problem because of the variations in the data) compared with other existing methods. More... »

PAGES

1-15

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12559-019-09636-0

DOI

http://dx.doi.org/10.1007/s12559-019-09636-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113144300


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Catholic University of Korea", 
          "id": "https://www.grid.ac/institutes/grid.411947.e", 
          "name": [
            "Department of Information, Communication and Electronics Engineering, Catholic University of Korea, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sachnev", 
        "givenName": "Vasily", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanyang Technological University", 
          "id": "https://www.grid.ac/institutes/grid.59025.3b", 
          "name": [
            "School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suresh", 
        "givenName": "Sundaram", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanyang Technological University", 
          "id": "https://www.grid.ac/institutes/grid.59025.3b", 
          "name": [
            "School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sundararajan", 
        "givenName": "Narasimman", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Visvesvaraya Technological University", 
          "id": "https://www.grid.ac/institutes/grid.444321.4", 
          "name": [
            "Department of Information Science and Engineering, Sri Jayachamarajendra College of Engineering, Mysuru, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mahanand", 
        "givenName": "Belathur Suresh", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Psychiatry Division, Sidra Medicine, Doha, Qatar"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Azeem", 
        "givenName": "Muhammad W.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Children\u2019s Clinical Management Group, Sidra Medicine, Doha, Qatar"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saraswathi", 
        "givenName": "Saras", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jaac.2012.07.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001480599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijdevneu.2013.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001547888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2007.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002567481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2008.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005791660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12559-014-9255-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005939490", 
          "https://doi.org/10.1007/s12559-014-9255-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0137296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006959955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1270-9638(03)00053-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007062392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1270-9638(03)00053-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007062392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnsys.2012.00063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007209686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnsys.2012.00061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007736905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-0447.2011.01786.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009647257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2013.12.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012343085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12559-015-9333-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014685689", 
          "https://doi.org/10.1007/s12559-015-9333-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2004.05.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015428714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00787-015-0678-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016389668", 
          "https://doi.org/10.1007/s00787-015-0678-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnsys.2012.00062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016951811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2012.12.064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017766225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1053-8119(03)00169-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018020307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1053-8119(03)00169-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018020307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12035-014-8685-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018594040", 
          "https://doi.org/10.1007/s12035-014-8685-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnsys.2012.00059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021123783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-03680-9_39", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021683996", 
          "https://doi.org/10.1007/978-3-319-03680-9_39"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0075115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021939792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0075115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021939792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0075115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021939792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12559-014-9268-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025323389", 
          "https://doi.org/10.1007/s12559-014-9268-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pscychresns.2010.03.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026330395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1378/chest.13-1691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028589037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnsys.2012.00066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031743358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/1999/180434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032762443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnsys.2012.00068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033801897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12021-014-9238-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034279464", 
          "https://doi.org/10.1007/s12021-014-9238-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2016.06.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036180331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2013.08.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037318382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archpsyc.1996.01830070053009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037517954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2005.12.126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038265102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.20496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038364211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnhum.2013.00192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039053200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0160697", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044438893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-006-0030-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044941359", 
          "https://doi.org/10.1007/s00158-006-0030-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-006-0030-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044941359", 
          "https://doi.org/10.1007/s00158-006-0030-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12559-012-9199-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047396674", 
          "https://doi.org/10.1007/s12559-012-9199-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-012372560-8/50002-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048173047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0079476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050846318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engappai.2010.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051139987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pscychresns.2009.10.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051691029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2010.08.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051770184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2011.09.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052538983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12559-009-9029-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053735491", 
          "https://doi.org/10.1007/s12559-009-9029-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12559-009-9029-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053735491", 
          "https://doi.org/10.1007/s12559-009-9029-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lsp.2010.2053356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061377780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1176/ajp.2007.164.6.942", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063486907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.17485/ijst/2016/v9i8/87909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068343080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083296856", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnins.2017.00320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085880105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icarcv.2006.345467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093842705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icarcv.2006.345467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093842705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ccip.2015.7100690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094702558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icarcv.2014.7064272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095654748"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-30", 
    "datePublishedReg": "2019-03-30", 
    "description": "In this paper, we present a multi-region ensemble classifier approach (MRECA) using a cognitive ensemble of classifiers for accurate identification of attention-deficit/hyperactivity disorder (ADHD) subjects. This approach is developed using the features extracted from the structural MRIs of three different developing brain regions, viz., the amygdala, caudate, and hippocampus. For this study, the structural magnetic resonance imaging (sMRI) data provided by the ADHD-200 consortium has been used to identify the following three classes of ADHD, viz., ADHD-combined, ADHD-inattentive, and the TDC (typically developing control). From the sMRIs of the amygdala, caudate, and hippocampus regions of the brain from the ADHD-200 data, multiple feature sets were obtained using a feature-selecting genetic algorithm (FSGA), in a wraparound approach using an extreme learning machine (ELM) basic classifier. An improved crossover operator for the FSGA has been developed for obtaining higher accuracies compared with other existing crossover operators. From the multiple feature sets and the corresponding ELM classifiers, a classifier-selecting genetic algorithm (CSGA) has been developed to identify the top performing feature sets and their ELM classifiers. These classifiers are then combined using a risk-sensitive hinge loss function to form a risk-sensitive cognitive ensemble classifier resulting in a simultaneous multiclass classification of ADHD with higher accuracies. Performance evaluation of the multi-region ensemble classifier is presented under the following three scenarios, viz., region-based individual (best) classifier, region-based ensemble classifier, and finally a multiple-region-based ensemble classifier. The study results clearly indicate that the proposed \u201cmulti-region ensemble classification approach\u201d (MRECA) achieves a much higher classification accuracy of ADHD data (normally a difficult problem because of the variations in the data) compared with other existing methods.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12559-019-09636-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041199", 
        "issn": [
          "1866-9956", 
          "1866-9964"
        ], 
        "name": "Cognitive Computation", 
        "type": "Periodical"
      }
    ], 
    "name": "Multi-Region Risk-Sensitive Cognitive Ensembler for Accurate Detection of Attention-Deficit/Hyperactivity Disorder", 
    "pagination": "1-15", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0311170c4ba505a32792472a64bc10b7c62748b7ec6f48054b2914968ce99d16"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12559-019-09636-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113144300"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12559-019-09636-0", 
      "https://app.dimensions.ai/details/publication/pub.1113144300"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46777_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12559-019-09636-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12559-019-09636-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12559-019-09636-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12559-019-09636-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12559-019-09636-0'


 

This table displays all metadata directly associated to this object as RDF triples.

259 TRIPLES      21 PREDICATES      76 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12559-019-09636-0 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N79fb9993013e486a8b35b7212674c7fa
4 schema:citation sg:pub.10.1007/978-3-319-03680-9_39
5 sg:pub.10.1007/s00158-006-0030-1
6 sg:pub.10.1007/s00787-015-0678-4
7 sg:pub.10.1007/s12021-014-9238-1
8 sg:pub.10.1007/s12035-014-8685-x
9 sg:pub.10.1007/s12559-009-9029-4
10 sg:pub.10.1007/s12559-012-9199-3
11 sg:pub.10.1007/s12559-014-9255-2
12 sg:pub.10.1007/s12559-014-9268-x
13 sg:pub.10.1007/s12559-015-9333-0
14 https://app.dimensions.ai/details/publication/pub.1083296856
15 https://doi.org/10.1001/archpsyc.1996.01830070053009
16 https://doi.org/10.1002/hbm.20496
17 https://doi.org/10.1016/b978-012372560-8/50002-4
18 https://doi.org/10.1016/j.engappai.2010.06.009
19 https://doi.org/10.1016/j.ijdevneu.2013.06.004
20 https://doi.org/10.1016/j.ins.2011.09.015
21 https://doi.org/10.1016/j.jaac.2012.07.008
22 https://doi.org/10.1016/j.neucom.2005.12.126
23 https://doi.org/10.1016/j.neucom.2008.01.005
24 https://doi.org/10.1016/j.neucom.2012.12.064
25 https://doi.org/10.1016/j.neucom.2013.08.041
26 https://doi.org/10.1016/j.neuroimage.2004.05.010
27 https://doi.org/10.1016/j.neuroimage.2007.07.007
28 https://doi.org/10.1016/j.neuroimage.2013.12.015
29 https://doi.org/10.1016/j.neuroimage.2016.06.034
30 https://doi.org/10.1016/j.neuron.2010.08.040
31 https://doi.org/10.1016/j.pscychresns.2009.10.012
32 https://doi.org/10.1016/j.pscychresns.2010.03.010
33 https://doi.org/10.1016/s1053-8119(03)00169-1
34 https://doi.org/10.1016/s1270-9638(03)00053-1
35 https://doi.org/10.1109/ccip.2015.7100690
36 https://doi.org/10.1109/icarcv.2006.345467
37 https://doi.org/10.1109/icarcv.2014.7064272
38 https://doi.org/10.1109/lsp.2010.2053356
39 https://doi.org/10.1111/j.1600-0447.2011.01786.x
40 https://doi.org/10.1155/1999/180434
41 https://doi.org/10.1176/ajp.2007.164.6.942
42 https://doi.org/10.1371/journal.pone.0075115
43 https://doi.org/10.1371/journal.pone.0079476
44 https://doi.org/10.1371/journal.pone.0137296
45 https://doi.org/10.1371/journal.pone.0160697
46 https://doi.org/10.1378/chest.13-1691
47 https://doi.org/10.17485/ijst/2016/v9i8/87909
48 https://doi.org/10.3389/fnhum.2013.00192
49 https://doi.org/10.3389/fnins.2017.00320
50 https://doi.org/10.3389/fnsys.2012.00059
51 https://doi.org/10.3389/fnsys.2012.00061
52 https://doi.org/10.3389/fnsys.2012.00062
53 https://doi.org/10.3389/fnsys.2012.00063
54 https://doi.org/10.3389/fnsys.2012.00066
55 https://doi.org/10.3389/fnsys.2012.00068
56 schema:datePublished 2019-03-30
57 schema:datePublishedReg 2019-03-30
58 schema:description In this paper, we present a multi-region ensemble classifier approach (MRECA) using a cognitive ensemble of classifiers for accurate identification of attention-deficit/hyperactivity disorder (ADHD) subjects. This approach is developed using the features extracted from the structural MRIs of three different developing brain regions, viz., the amygdala, caudate, and hippocampus. For this study, the structural magnetic resonance imaging (sMRI) data provided by the ADHD-200 consortium has been used to identify the following three classes of ADHD, viz., ADHD-combined, ADHD-inattentive, and the TDC (typically developing control). From the sMRIs of the amygdala, caudate, and hippocampus regions of the brain from the ADHD-200 data, multiple feature sets were obtained using a feature-selecting genetic algorithm (FSGA), in a wraparound approach using an extreme learning machine (ELM) basic classifier. An improved crossover operator for the FSGA has been developed for obtaining higher accuracies compared with other existing crossover operators. From the multiple feature sets and the corresponding ELM classifiers, a classifier-selecting genetic algorithm (CSGA) has been developed to identify the top performing feature sets and their ELM classifiers. These classifiers are then combined using a risk-sensitive hinge loss function to form a risk-sensitive cognitive ensemble classifier resulting in a simultaneous multiclass classification of ADHD with higher accuracies. Performance evaluation of the multi-region ensemble classifier is presented under the following three scenarios, viz., region-based individual (best) classifier, region-based ensemble classifier, and finally a multiple-region-based ensemble classifier. The study results clearly indicate that the proposed “multi-region ensemble classification approach” (MRECA) achieves a much higher classification accuracy of ADHD data (normally a difficult problem because of the variations in the data) compared with other existing methods.
59 schema:genre research_article
60 schema:inLanguage en
61 schema:isAccessibleForFree false
62 schema:isPartOf sg:journal.1041199
63 schema:name Multi-Region Risk-Sensitive Cognitive Ensembler for Accurate Detection of Attention-Deficit/Hyperactivity Disorder
64 schema:pagination 1-15
65 schema:productId N95d4c40be1e84e9a8c82deec0520ca4e
66 Nacd031f8d35242ceaa802435154abe7e
67 Nba0ac378892a4500b57bebde46299c71
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113144300
69 https://doi.org/10.1007/s12559-019-09636-0
70 schema:sdDatePublished 2019-04-11T13:36
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N965d32cafc0d401eba904093b078e3a4
73 schema:url https://link.springer.com/10.1007%2Fs12559-019-09636-0
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N1438bfbb6d6d4989921dfe9b5d2a25e3 schema:name Psychiatry Division, Sidra Medicine, Doha, Qatar
78 rdf:type schema:Organization
79 N20dfa25cba15459a9f0b005088859908 schema:affiliation https://www.grid.ac/institutes/grid.444321.4
80 schema:familyName Mahanand
81 schema:givenName Belathur Suresh
82 rdf:type schema:Person
83 N35c25d56627849b79e87b1414bec01a1 rdf:first Nc1e61ccc1c2044c794f3799107ff18b7
84 rdf:rest N8261c56e3a5448dc801768d2c0e626fb
85 N3796b3475d35432ebb173dda0bec8e85 rdf:first Nef8a762e49924792a943d63500304419
86 rdf:rest rdf:nil
87 N38db1d7ead4640f7973c730a12a5f037 schema:name Department of Children’s Clinical Management Group, Sidra Medicine, Doha, Qatar
88 rdf:type schema:Organization
89 N79d8c743337d434fb8dc7f5118d36347 rdf:first N7e02c400a0604a99a38590563988458b
90 rdf:rest N35c25d56627849b79e87b1414bec01a1
91 N79fb9993013e486a8b35b7212674c7fa rdf:first Naf9f4971e57744a38234e8d48e26f219
92 rdf:rest N79d8c743337d434fb8dc7f5118d36347
93 N7e02c400a0604a99a38590563988458b schema:affiliation https://www.grid.ac/institutes/grid.59025.3b
94 schema:familyName Suresh
95 schema:givenName Sundaram
96 rdf:type schema:Person
97 N8261c56e3a5448dc801768d2c0e626fb rdf:first N20dfa25cba15459a9f0b005088859908
98 rdf:rest N9e719cc7368d4520adc39fdf2f84a627
99 N95d4c40be1e84e9a8c82deec0520ca4e schema:name dimensions_id
100 schema:value pub.1113144300
101 rdf:type schema:PropertyValue
102 N965d32cafc0d401eba904093b078e3a4 schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 N9e719cc7368d4520adc39fdf2f84a627 rdf:first N9ecbf531b7fd4c1d8654ad9210277ea1
105 rdf:rest N3796b3475d35432ebb173dda0bec8e85
106 N9ecbf531b7fd4c1d8654ad9210277ea1 schema:affiliation N1438bfbb6d6d4989921dfe9b5d2a25e3
107 schema:familyName Azeem
108 schema:givenName Muhammad W.
109 rdf:type schema:Person
110 Nacd031f8d35242ceaa802435154abe7e schema:name doi
111 schema:value 10.1007/s12559-019-09636-0
112 rdf:type schema:PropertyValue
113 Naf9f4971e57744a38234e8d48e26f219 schema:affiliation https://www.grid.ac/institutes/grid.411947.e
114 schema:familyName Sachnev
115 schema:givenName Vasily
116 rdf:type schema:Person
117 Nba0ac378892a4500b57bebde46299c71 schema:name readcube_id
118 schema:value 0311170c4ba505a32792472a64bc10b7c62748b7ec6f48054b2914968ce99d16
119 rdf:type schema:PropertyValue
120 Nc1e61ccc1c2044c794f3799107ff18b7 schema:affiliation https://www.grid.ac/institutes/grid.59025.3b
121 schema:familyName Sundararajan
122 schema:givenName Narasimman
123 rdf:type schema:Person
124 Nef8a762e49924792a943d63500304419 schema:affiliation N38db1d7ead4640f7973c730a12a5f037
125 schema:familyName Saraswathi
126 schema:givenName Saras
127 rdf:type schema:Person
128 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
129 schema:name Psychology and Cognitive Sciences
130 rdf:type schema:DefinedTerm
131 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
132 schema:name Psychology
133 rdf:type schema:DefinedTerm
134 sg:journal.1041199 schema:issn 1866-9956
135 1866-9964
136 schema:name Cognitive Computation
137 rdf:type schema:Periodical
138 sg:pub.10.1007/978-3-319-03680-9_39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021683996
139 https://doi.org/10.1007/978-3-319-03680-9_39
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s00158-006-0030-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044941359
142 https://doi.org/10.1007/s00158-006-0030-1
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s00787-015-0678-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016389668
145 https://doi.org/10.1007/s00787-015-0678-4
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s12021-014-9238-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034279464
148 https://doi.org/10.1007/s12021-014-9238-1
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s12035-014-8685-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018594040
151 https://doi.org/10.1007/s12035-014-8685-x
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s12559-009-9029-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053735491
154 https://doi.org/10.1007/s12559-009-9029-4
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s12559-012-9199-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047396674
157 https://doi.org/10.1007/s12559-012-9199-3
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s12559-014-9255-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005939490
160 https://doi.org/10.1007/s12559-014-9255-2
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s12559-014-9268-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025323389
163 https://doi.org/10.1007/s12559-014-9268-x
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s12559-015-9333-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014685689
166 https://doi.org/10.1007/s12559-015-9333-0
167 rdf:type schema:CreativeWork
168 https://app.dimensions.ai/details/publication/pub.1083296856 schema:CreativeWork
169 https://doi.org/10.1001/archpsyc.1996.01830070053009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037517954
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1002/hbm.20496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038364211
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/b978-012372560-8/50002-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048173047
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.engappai.2010.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051139987
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.ijdevneu.2013.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001547888
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.ins.2011.09.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052538983
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.jaac.2012.07.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001480599
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.neucom.2005.12.126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038265102
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.neucom.2008.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005791660
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.neucom.2012.12.064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017766225
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.neucom.2013.08.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037318382
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.neuroimage.2004.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015428714
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.neuroimage.2007.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002567481
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.neuroimage.2013.12.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012343085
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.neuroimage.2016.06.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036180331
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.neuron.2010.08.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051770184
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.pscychresns.2009.10.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051691029
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.pscychresns.2010.03.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026330395
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/s1053-8119(03)00169-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018020307
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/s1270-9638(03)00053-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007062392
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1109/ccip.2015.7100690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094702558
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1109/icarcv.2006.345467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093842705
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1109/icarcv.2014.7064272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095654748
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1109/lsp.2010.2053356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061377780
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1111/j.1600-0447.2011.01786.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009647257
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1155/1999/180434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032762443
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1176/ajp.2007.164.6.942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063486907
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1371/journal.pone.0075115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021939792
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1371/journal.pone.0079476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050846318
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1371/journal.pone.0137296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006959955
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1371/journal.pone.0160697 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044438893
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1378/chest.13-1691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028589037
232 rdf:type schema:CreativeWork
233 https://doi.org/10.17485/ijst/2016/v9i8/87909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068343080
234 rdf:type schema:CreativeWork
235 https://doi.org/10.3389/fnhum.2013.00192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039053200
236 rdf:type schema:CreativeWork
237 https://doi.org/10.3389/fnins.2017.00320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085880105
238 rdf:type schema:CreativeWork
239 https://doi.org/10.3389/fnsys.2012.00059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021123783
240 rdf:type schema:CreativeWork
241 https://doi.org/10.3389/fnsys.2012.00061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007736905
242 rdf:type schema:CreativeWork
243 https://doi.org/10.3389/fnsys.2012.00062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016951811
244 rdf:type schema:CreativeWork
245 https://doi.org/10.3389/fnsys.2012.00063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007209686
246 rdf:type schema:CreativeWork
247 https://doi.org/10.3389/fnsys.2012.00066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031743358
248 rdf:type schema:CreativeWork
249 https://doi.org/10.3389/fnsys.2012.00068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033801897
250 rdf:type schema:CreativeWork
251 https://www.grid.ac/institutes/grid.411947.e schema:alternateName Catholic University of Korea
252 schema:name Department of Information, Communication and Electronics Engineering, Catholic University of Korea, Seoul, South Korea
253 rdf:type schema:Organization
254 https://www.grid.ac/institutes/grid.444321.4 schema:alternateName Visvesvaraya Technological University
255 schema:name Department of Information Science and Engineering, Sri Jayachamarajendra College of Engineering, Mysuru, India
256 rdf:type schema:Organization
257 https://www.grid.ac/institutes/grid.59025.3b schema:alternateName Nanyang Technological University
258 schema:name School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, Singapore
259 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...