Multi-Region Risk-Sensitive Cognitive Ensembler for Accurate Detection of Attention-Deficit/Hyperactivity Disorder View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-30

AUTHORS

Vasily Sachnev, Sundaram Suresh, Narasimman Sundararajan, Belathur Suresh Mahanand, Muhammad W. Azeem, Saras Saraswathi

ABSTRACT

In this paper, we present a multi-region ensemble classifier approach (MRECA) using a cognitive ensemble of classifiers for accurate identification of attention-deficit/hyperactivity disorder (ADHD) subjects. This approach is developed using the features extracted from the structural MRIs of three different developing brain regions, viz., the amygdala, caudate, and hippocampus. For this study, the structural magnetic resonance imaging (sMRI) data provided by the ADHD-200 consortium has been used to identify the following three classes of ADHD, viz., ADHD-combined, ADHD-inattentive, and the TDC (typically developing control). From the sMRIs of the amygdala, caudate, and hippocampus regions of the brain from the ADHD-200 data, multiple feature sets were obtained using a feature-selecting genetic algorithm (FSGA), in a wraparound approach using an extreme learning machine (ELM) basic classifier. An improved crossover operator for the FSGA has been developed for obtaining higher accuracies compared with other existing crossover operators. From the multiple feature sets and the corresponding ELM classifiers, a classifier-selecting genetic algorithm (CSGA) has been developed to identify the top performing feature sets and their ELM classifiers. These classifiers are then combined using a risk-sensitive hinge loss function to form a risk-sensitive cognitive ensemble classifier resulting in a simultaneous multiclass classification of ADHD with higher accuracies. Performance evaluation of the multi-region ensemble classifier is presented under the following three scenarios, viz., region-based individual (best) classifier, region-based ensemble classifier, and finally a multiple-region-based ensemble classifier. The study results clearly indicate that the proposed “multi-region ensemble classification approach” (MRECA) achieves a much higher classification accuracy of ADHD data (normally a difficult problem because of the variations in the data) compared with other existing methods. More... »

PAGES

1-15

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12559-019-09636-0

DOI

http://dx.doi.org/10.1007/s12559-019-09636-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113144300


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Catholic University of Korea", 
          "id": "https://www.grid.ac/institutes/grid.411947.e", 
          "name": [
            "Department of Information, Communication and Electronics Engineering, Catholic University of Korea, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sachnev", 
        "givenName": "Vasily", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanyang Technological University", 
          "id": "https://www.grid.ac/institutes/grid.59025.3b", 
          "name": [
            "School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suresh", 
        "givenName": "Sundaram", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanyang Technological University", 
          "id": "https://www.grid.ac/institutes/grid.59025.3b", 
          "name": [
            "School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sundararajan", 
        "givenName": "Narasimman", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Visvesvaraya Technological University", 
          "id": "https://www.grid.ac/institutes/grid.444321.4", 
          "name": [
            "Department of Information Science and Engineering, Sri Jayachamarajendra College of Engineering, Mysuru, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mahanand", 
        "givenName": "Belathur Suresh", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Psychiatry Division, Sidra Medicine, Doha, Qatar"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Azeem", 
        "givenName": "Muhammad W.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Children\u2019s Clinical Management Group, Sidra Medicine, Doha, Qatar"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saraswathi", 
        "givenName": "Saras", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jaac.2012.07.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001480599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijdevneu.2013.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001547888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2007.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002567481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2008.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005791660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12559-014-9255-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005939490", 
          "https://doi.org/10.1007/s12559-014-9255-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0137296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006959955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1270-9638(03)00053-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007062392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1270-9638(03)00053-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007062392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnsys.2012.00063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007209686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnsys.2012.00061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007736905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-0447.2011.01786.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009647257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2013.12.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012343085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12559-015-9333-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014685689", 
          "https://doi.org/10.1007/s12559-015-9333-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2004.05.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015428714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00787-015-0678-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016389668", 
          "https://doi.org/10.1007/s00787-015-0678-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnsys.2012.00062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016951811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2012.12.064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017766225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1053-8119(03)00169-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018020307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1053-8119(03)00169-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018020307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12035-014-8685-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018594040", 
          "https://doi.org/10.1007/s12035-014-8685-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnsys.2012.00059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021123783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-03680-9_39", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021683996", 
          "https://doi.org/10.1007/978-3-319-03680-9_39"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0075115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021939792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0075115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021939792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0075115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021939792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12559-014-9268-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025323389", 
          "https://doi.org/10.1007/s12559-014-9268-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pscychresns.2010.03.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026330395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1378/chest.13-1691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028589037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnsys.2012.00066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031743358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/1999/180434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032762443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnsys.2012.00068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033801897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12021-014-9238-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034279464", 
          "https://doi.org/10.1007/s12021-014-9238-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2016.06.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036180331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2013.08.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037318382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archpsyc.1996.01830070053009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037517954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2005.12.126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038265102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.20496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038364211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnhum.2013.00192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039053200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0160697", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044438893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-006-0030-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044941359", 
          "https://doi.org/10.1007/s00158-006-0030-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-006-0030-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044941359", 
          "https://doi.org/10.1007/s00158-006-0030-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12559-012-9199-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047396674", 
          "https://doi.org/10.1007/s12559-012-9199-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-012372560-8/50002-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048173047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0079476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050846318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engappai.2010.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051139987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pscychresns.2009.10.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051691029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2010.08.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051770184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2011.09.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052538983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12559-009-9029-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053735491", 
          "https://doi.org/10.1007/s12559-009-9029-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12559-009-9029-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053735491", 
          "https://doi.org/10.1007/s12559-009-9029-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lsp.2010.2053356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061377780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1176/ajp.2007.164.6.942", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063486907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.17485/ijst/2016/v9i8/87909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068343080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083296856", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnins.2017.00320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085880105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icarcv.2006.345467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093842705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icarcv.2006.345467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093842705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ccip.2015.7100690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094702558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icarcv.2014.7064272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095654748"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-30", 
    "datePublishedReg": "2019-03-30", 
    "description": "In this paper, we present a multi-region ensemble classifier approach (MRECA) using a cognitive ensemble of classifiers for accurate identification of attention-deficit/hyperactivity disorder (ADHD) subjects. This approach is developed using the features extracted from the structural MRIs of three different developing brain regions, viz., the amygdala, caudate, and hippocampus. For this study, the structural magnetic resonance imaging (sMRI) data provided by the ADHD-200 consortium has been used to identify the following three classes of ADHD, viz., ADHD-combined, ADHD-inattentive, and the TDC (typically developing control). From the sMRIs of the amygdala, caudate, and hippocampus regions of the brain from the ADHD-200 data, multiple feature sets were obtained using a feature-selecting genetic algorithm (FSGA), in a wraparound approach using an extreme learning machine (ELM) basic classifier. An improved crossover operator for the FSGA has been developed for obtaining higher accuracies compared with other existing crossover operators. From the multiple feature sets and the corresponding ELM classifiers, a classifier-selecting genetic algorithm (CSGA) has been developed to identify the top performing feature sets and their ELM classifiers. These classifiers are then combined using a risk-sensitive hinge loss function to form a risk-sensitive cognitive ensemble classifier resulting in a simultaneous multiclass classification of ADHD with higher accuracies. Performance evaluation of the multi-region ensemble classifier is presented under the following three scenarios, viz., region-based individual (best) classifier, region-based ensemble classifier, and finally a multiple-region-based ensemble classifier. The study results clearly indicate that the proposed \u201cmulti-region ensemble classification approach\u201d (MRECA) achieves a much higher classification accuracy of ADHD data (normally a difficult problem because of the variations in the data) compared with other existing methods.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12559-019-09636-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041199", 
        "issn": [
          "1866-9956", 
          "1866-9964"
        ], 
        "name": "Cognitive Computation", 
        "type": "Periodical"
      }
    ], 
    "name": "Multi-Region Risk-Sensitive Cognitive Ensembler for Accurate Detection of Attention-Deficit/Hyperactivity Disorder", 
    "pagination": "1-15", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0311170c4ba505a32792472a64bc10b7c62748b7ec6f48054b2914968ce99d16"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12559-019-09636-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113144300"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12559-019-09636-0", 
      "https://app.dimensions.ai/details/publication/pub.1113144300"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46777_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12559-019-09636-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12559-019-09636-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12559-019-09636-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12559-019-09636-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12559-019-09636-0'


 

This table displays all metadata directly associated to this object as RDF triples.

259 TRIPLES      21 PREDICATES      76 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12559-019-09636-0 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N1d8d117077164bc88b0757f9bf835e25
4 schema:citation sg:pub.10.1007/978-3-319-03680-9_39
5 sg:pub.10.1007/s00158-006-0030-1
6 sg:pub.10.1007/s00787-015-0678-4
7 sg:pub.10.1007/s12021-014-9238-1
8 sg:pub.10.1007/s12035-014-8685-x
9 sg:pub.10.1007/s12559-009-9029-4
10 sg:pub.10.1007/s12559-012-9199-3
11 sg:pub.10.1007/s12559-014-9255-2
12 sg:pub.10.1007/s12559-014-9268-x
13 sg:pub.10.1007/s12559-015-9333-0
14 https://app.dimensions.ai/details/publication/pub.1083296856
15 https://doi.org/10.1001/archpsyc.1996.01830070053009
16 https://doi.org/10.1002/hbm.20496
17 https://doi.org/10.1016/b978-012372560-8/50002-4
18 https://doi.org/10.1016/j.engappai.2010.06.009
19 https://doi.org/10.1016/j.ijdevneu.2013.06.004
20 https://doi.org/10.1016/j.ins.2011.09.015
21 https://doi.org/10.1016/j.jaac.2012.07.008
22 https://doi.org/10.1016/j.neucom.2005.12.126
23 https://doi.org/10.1016/j.neucom.2008.01.005
24 https://doi.org/10.1016/j.neucom.2012.12.064
25 https://doi.org/10.1016/j.neucom.2013.08.041
26 https://doi.org/10.1016/j.neuroimage.2004.05.010
27 https://doi.org/10.1016/j.neuroimage.2007.07.007
28 https://doi.org/10.1016/j.neuroimage.2013.12.015
29 https://doi.org/10.1016/j.neuroimage.2016.06.034
30 https://doi.org/10.1016/j.neuron.2010.08.040
31 https://doi.org/10.1016/j.pscychresns.2009.10.012
32 https://doi.org/10.1016/j.pscychresns.2010.03.010
33 https://doi.org/10.1016/s1053-8119(03)00169-1
34 https://doi.org/10.1016/s1270-9638(03)00053-1
35 https://doi.org/10.1109/ccip.2015.7100690
36 https://doi.org/10.1109/icarcv.2006.345467
37 https://doi.org/10.1109/icarcv.2014.7064272
38 https://doi.org/10.1109/lsp.2010.2053356
39 https://doi.org/10.1111/j.1600-0447.2011.01786.x
40 https://doi.org/10.1155/1999/180434
41 https://doi.org/10.1176/ajp.2007.164.6.942
42 https://doi.org/10.1371/journal.pone.0075115
43 https://doi.org/10.1371/journal.pone.0079476
44 https://doi.org/10.1371/journal.pone.0137296
45 https://doi.org/10.1371/journal.pone.0160697
46 https://doi.org/10.1378/chest.13-1691
47 https://doi.org/10.17485/ijst/2016/v9i8/87909
48 https://doi.org/10.3389/fnhum.2013.00192
49 https://doi.org/10.3389/fnins.2017.00320
50 https://doi.org/10.3389/fnsys.2012.00059
51 https://doi.org/10.3389/fnsys.2012.00061
52 https://doi.org/10.3389/fnsys.2012.00062
53 https://doi.org/10.3389/fnsys.2012.00063
54 https://doi.org/10.3389/fnsys.2012.00066
55 https://doi.org/10.3389/fnsys.2012.00068
56 schema:datePublished 2019-03-30
57 schema:datePublishedReg 2019-03-30
58 schema:description In this paper, we present a multi-region ensemble classifier approach (MRECA) using a cognitive ensemble of classifiers for accurate identification of attention-deficit/hyperactivity disorder (ADHD) subjects. This approach is developed using the features extracted from the structural MRIs of three different developing brain regions, viz., the amygdala, caudate, and hippocampus. For this study, the structural magnetic resonance imaging (sMRI) data provided by the ADHD-200 consortium has been used to identify the following three classes of ADHD, viz., ADHD-combined, ADHD-inattentive, and the TDC (typically developing control). From the sMRIs of the amygdala, caudate, and hippocampus regions of the brain from the ADHD-200 data, multiple feature sets were obtained using a feature-selecting genetic algorithm (FSGA), in a wraparound approach using an extreme learning machine (ELM) basic classifier. An improved crossover operator for the FSGA has been developed for obtaining higher accuracies compared with other existing crossover operators. From the multiple feature sets and the corresponding ELM classifiers, a classifier-selecting genetic algorithm (CSGA) has been developed to identify the top performing feature sets and their ELM classifiers. These classifiers are then combined using a risk-sensitive hinge loss function to form a risk-sensitive cognitive ensemble classifier resulting in a simultaneous multiclass classification of ADHD with higher accuracies. Performance evaluation of the multi-region ensemble classifier is presented under the following three scenarios, viz., region-based individual (best) classifier, region-based ensemble classifier, and finally a multiple-region-based ensemble classifier. The study results clearly indicate that the proposed “multi-region ensemble classification approach” (MRECA) achieves a much higher classification accuracy of ADHD data (normally a difficult problem because of the variations in the data) compared with other existing methods.
59 schema:genre research_article
60 schema:inLanguage en
61 schema:isAccessibleForFree false
62 schema:isPartOf sg:journal.1041199
63 schema:name Multi-Region Risk-Sensitive Cognitive Ensembler for Accurate Detection of Attention-Deficit/Hyperactivity Disorder
64 schema:pagination 1-15
65 schema:productId N6078b9ef9d4643e8a113b2d9f80f7748
66 Nbdd7704fffb54a00a334f238dbf55024
67 Nd64a08e96a8c47bf93123e0ae73eda60
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113144300
69 https://doi.org/10.1007/s12559-019-09636-0
70 schema:sdDatePublished 2019-04-11T13:36
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N87e32d3907844d2091b4e403ae5f216b
73 schema:url https://link.springer.com/10.1007%2Fs12559-019-09636-0
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N116503f617f648439e60fd2a75eb50d8 schema:affiliation N172c996de7af4440b60fb45b6be632b3
78 schema:familyName Azeem
79 schema:givenName Muhammad W.
80 rdf:type schema:Person
81 N172c996de7af4440b60fb45b6be632b3 schema:name Psychiatry Division, Sidra Medicine, Doha, Qatar
82 rdf:type schema:Organization
83 N1915ec294ee7436880ec940198c6ecf5 schema:affiliation https://www.grid.ac/institutes/grid.59025.3b
84 schema:familyName Sundararajan
85 schema:givenName Narasimman
86 rdf:type schema:Person
87 N1d8d117077164bc88b0757f9bf835e25 rdf:first N284053f07650423dab9f1c83ee7799fc
88 rdf:rest N34b419d224794556a7d15159e0ed382d
89 N284053f07650423dab9f1c83ee7799fc schema:affiliation https://www.grid.ac/institutes/grid.411947.e
90 schema:familyName Sachnev
91 schema:givenName Vasily
92 rdf:type schema:Person
93 N34b419d224794556a7d15159e0ed382d rdf:first Nbef09a0267584692918cbc7021f17fd4
94 rdf:rest Nf5875669fb9045848aa00f7ccec2a784
95 N5eb360c110c64eb7a890f77c3683e8c6 rdf:first N116503f617f648439e60fd2a75eb50d8
96 rdf:rest N7d87b5ada99b4b50bb2c97fa8e757c43
97 N6078b9ef9d4643e8a113b2d9f80f7748 schema:name doi
98 schema:value 10.1007/s12559-019-09636-0
99 rdf:type schema:PropertyValue
100 N7d87b5ada99b4b50bb2c97fa8e757c43 rdf:first N7f2a867d951548d0900e6db6558c749e
101 rdf:rest rdf:nil
102 N7f2a867d951548d0900e6db6558c749e schema:affiliation Ncf0b2320761a42478123ec005146f6eb
103 schema:familyName Saraswathi
104 schema:givenName Saras
105 rdf:type schema:Person
106 N83b27a6083c0419c8a28b613d916ac6a rdf:first Na81c001f385b4366994ae674ff5a5b83
107 rdf:rest N5eb360c110c64eb7a890f77c3683e8c6
108 N87e32d3907844d2091b4e403ae5f216b schema:name Springer Nature - SN SciGraph project
109 rdf:type schema:Organization
110 Na81c001f385b4366994ae674ff5a5b83 schema:affiliation https://www.grid.ac/institutes/grid.444321.4
111 schema:familyName Mahanand
112 schema:givenName Belathur Suresh
113 rdf:type schema:Person
114 Nbdd7704fffb54a00a334f238dbf55024 schema:name dimensions_id
115 schema:value pub.1113144300
116 rdf:type schema:PropertyValue
117 Nbef09a0267584692918cbc7021f17fd4 schema:affiliation https://www.grid.ac/institutes/grid.59025.3b
118 schema:familyName Suresh
119 schema:givenName Sundaram
120 rdf:type schema:Person
121 Ncf0b2320761a42478123ec005146f6eb schema:name Department of Children’s Clinical Management Group, Sidra Medicine, Doha, Qatar
122 rdf:type schema:Organization
123 Nd64a08e96a8c47bf93123e0ae73eda60 schema:name readcube_id
124 schema:value 0311170c4ba505a32792472a64bc10b7c62748b7ec6f48054b2914968ce99d16
125 rdf:type schema:PropertyValue
126 Nf5875669fb9045848aa00f7ccec2a784 rdf:first N1915ec294ee7436880ec940198c6ecf5
127 rdf:rest N83b27a6083c0419c8a28b613d916ac6a
128 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
129 schema:name Psychology and Cognitive Sciences
130 rdf:type schema:DefinedTerm
131 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
132 schema:name Psychology
133 rdf:type schema:DefinedTerm
134 sg:journal.1041199 schema:issn 1866-9956
135 1866-9964
136 schema:name Cognitive Computation
137 rdf:type schema:Periodical
138 sg:pub.10.1007/978-3-319-03680-9_39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021683996
139 https://doi.org/10.1007/978-3-319-03680-9_39
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s00158-006-0030-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044941359
142 https://doi.org/10.1007/s00158-006-0030-1
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s00787-015-0678-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016389668
145 https://doi.org/10.1007/s00787-015-0678-4
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s12021-014-9238-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034279464
148 https://doi.org/10.1007/s12021-014-9238-1
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s12035-014-8685-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018594040
151 https://doi.org/10.1007/s12035-014-8685-x
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s12559-009-9029-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053735491
154 https://doi.org/10.1007/s12559-009-9029-4
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s12559-012-9199-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047396674
157 https://doi.org/10.1007/s12559-012-9199-3
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s12559-014-9255-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005939490
160 https://doi.org/10.1007/s12559-014-9255-2
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s12559-014-9268-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025323389
163 https://doi.org/10.1007/s12559-014-9268-x
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s12559-015-9333-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014685689
166 https://doi.org/10.1007/s12559-015-9333-0
167 rdf:type schema:CreativeWork
168 https://app.dimensions.ai/details/publication/pub.1083296856 schema:CreativeWork
169 https://doi.org/10.1001/archpsyc.1996.01830070053009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037517954
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1002/hbm.20496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038364211
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/b978-012372560-8/50002-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048173047
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.engappai.2010.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051139987
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.ijdevneu.2013.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001547888
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.ins.2011.09.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052538983
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.jaac.2012.07.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001480599
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.neucom.2005.12.126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038265102
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.neucom.2008.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005791660
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.neucom.2012.12.064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017766225
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.neucom.2013.08.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037318382
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.neuroimage.2004.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015428714
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.neuroimage.2007.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002567481
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.neuroimage.2013.12.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012343085
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.neuroimage.2016.06.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036180331
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.neuron.2010.08.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051770184
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.pscychresns.2009.10.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051691029
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.pscychresns.2010.03.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026330395
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/s1053-8119(03)00169-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018020307
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/s1270-9638(03)00053-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007062392
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1109/ccip.2015.7100690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094702558
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1109/icarcv.2006.345467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093842705
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1109/icarcv.2014.7064272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095654748
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1109/lsp.2010.2053356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061377780
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1111/j.1600-0447.2011.01786.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009647257
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1155/1999/180434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032762443
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1176/ajp.2007.164.6.942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063486907
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1371/journal.pone.0075115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021939792
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1371/journal.pone.0079476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050846318
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1371/journal.pone.0137296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006959955
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1371/journal.pone.0160697 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044438893
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1378/chest.13-1691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028589037
232 rdf:type schema:CreativeWork
233 https://doi.org/10.17485/ijst/2016/v9i8/87909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068343080
234 rdf:type schema:CreativeWork
235 https://doi.org/10.3389/fnhum.2013.00192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039053200
236 rdf:type schema:CreativeWork
237 https://doi.org/10.3389/fnins.2017.00320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085880105
238 rdf:type schema:CreativeWork
239 https://doi.org/10.3389/fnsys.2012.00059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021123783
240 rdf:type schema:CreativeWork
241 https://doi.org/10.3389/fnsys.2012.00061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007736905
242 rdf:type schema:CreativeWork
243 https://doi.org/10.3389/fnsys.2012.00062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016951811
244 rdf:type schema:CreativeWork
245 https://doi.org/10.3389/fnsys.2012.00063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007209686
246 rdf:type schema:CreativeWork
247 https://doi.org/10.3389/fnsys.2012.00066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031743358
248 rdf:type schema:CreativeWork
249 https://doi.org/10.3389/fnsys.2012.00068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033801897
250 rdf:type schema:CreativeWork
251 https://www.grid.ac/institutes/grid.411947.e schema:alternateName Catholic University of Korea
252 schema:name Department of Information, Communication and Electronics Engineering, Catholic University of Korea, Seoul, South Korea
253 rdf:type schema:Organization
254 https://www.grid.ac/institutes/grid.444321.4 schema:alternateName Visvesvaraya Technological University
255 schema:name Department of Information Science and Engineering, Sri Jayachamarajendra College of Engineering, Mysuru, India
256 rdf:type schema:Organization
257 https://www.grid.ac/institutes/grid.59025.3b schema:alternateName Nanyang Technological University
258 schema:name School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, Singapore
259 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...