A Novel Ship Target Detection Algorithm Based on Error Self-adjustment Extreme Learning Machine and Cascade Classifier View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Wandong Zhang, Qingzhong Li, Q. M. Jonathan Wu, Yimin Yang, Ming Li

ABSTRACT

High-frequency surface wave radar (HFSWR) has a vital civilian and military significance for ship target detection and tracking because of its wide visual field and large sea area coverage. However, most of the existing ship target detection methods of HFSWR face two main difficulties: (1) the received radar signals are strongly polluted by clutter and noises, and (2) it is difficult to detect ship targets in real-time due to high computational complexity. This paper presents a ship target detection algorithm to overcome the problems above by using a two-stage cascade classification structure. Firstly, to quickly obtain the target candidate regions, a simple gray-scale feature and a linear classifier were applied. Then, a new error self-adjustment extreme learning machine (ES-ELM) with Haar-like input features was adopted to further identify the target precisely in each candidate region. The proposed ES-ELM includes two parts: initialization part and updating part. In the former stage, the L1 regularizer process is adopted to find the sparse solution of output weights, to prune the useless neural nodes and to obtain the optimal number of hidden neurons. Also, to ensure an excellent generalization performance by the network, in the latter stage, the parameters of hidden layer are updated through several iterations using L2 regularizer process with pulled back error matrix. This process yields appropriate output weights and the appropriate hidden weights. Experimental results show that (1) compared with standard ELM, our proposed ES-ELM has higher classification accuracy and training efficiency, and the generalization performance is not sensitive to regularization parameter, (2) the proposed ship target detection algorithm based on ES-ELM outperforms most of the state-of-the-art methods for detection accuracy and computational efficiency. More... »

PAGES

110-124

References to SciGraph publications

  • 2011-06. Extreme learning machines: a survey in INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS
  • 2018-12. Deep Weighted Extreme Learning Machine in COGNITIVE COMPUTATION
  • 2017-12. Motor Imagery EEG Classification Based on Kernel Hierarchical Extreme Learning Machine in COGNITIVE COMPUTATION
  • 2017-12. Online Extreme Learning Machine with Hybrid Sampling Strategy for Sequential Imbalanced Data in COGNITIVE COMPUTATION
  • 2017-08. Common Subspace Learning via Cross-Domain Extreme Learning Machine in COGNITIVE COMPUTATION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12559-018-9606-5

    DOI

    http://dx.doi.org/10.1007/s12559-018-9606-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1107803971


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Windsor", 
              "id": "https://www.grid.ac/institutes/grid.267455.7", 
              "name": [
                "Department of Engineering, Ocean University of China, Qingdao, Shandong, China", 
                "Department of Electronic and Computer Engineering, University of Windsor, Windosr, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Wandong", 
            "id": "sg:person.016007534710.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016007534710.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ocean University of China", 
              "id": "https://www.grid.ac/institutes/grid.4422.0", 
              "name": [
                "Department of Engineering, Ocean University of China, Qingdao, Shandong, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Qingzhong", 
            "id": "sg:person.013617213310.89", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013617213310.89"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Windsor", 
              "id": "https://www.grid.ac/institutes/grid.267455.7", 
              "name": [
                "Department of Electronic and Computer Engineering, University of Windsor, Windosr, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wu", 
            "givenName": "Q. M. Jonathan", 
            "id": "sg:person.015515226365.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015515226365.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lakehead University", 
              "id": "https://www.grid.ac/institutes/grid.258900.6", 
              "name": [
                "Department of Computer Science, Lakehead University, Thunder Bay, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yang", 
            "givenName": "Yimin", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ocean University of China", 
              "id": "https://www.grid.ac/institutes/grid.4422.0", 
              "name": [
                "Department of Engineering, Ocean University of China, Qingdao, Shandong, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Ming", 
            "id": "sg:person.016531731565.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016531731565.98"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1109/tsmcb.2011.2168604", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006047450"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnnls.2012.2202289", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010062582"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2007.02.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013207250"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13042-011-0019-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031892380", 
              "https://doi.org/10.1007/s13042-011-0019-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2007.10.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035637386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.matcom.2011.01.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036994836"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2005.12.126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038265102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neunet.2016.06.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040287578"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neunet.2014.10.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045581577"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1049/iet-rsn.2012.0062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056836171"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/18.661502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061100600"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/lgrs.2008.923211", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061358758"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/taes.1983.309350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061483800"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tcyb.2015.2481713", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061580110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tcyb.2015.2492468", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061580137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tgrs.2010.2047022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061611447"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tgrs.2012.2188298", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061612278"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tim.2013.2297631", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061639781"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnn.2006.875977", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061717036"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnn.2006.875977", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061717036"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnn.2009.2024147", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061717572"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnn.2009.2036259", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061717641"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2017.01.064", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083700079"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/lgrs.2017.2673806", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084203662"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tifs.2017.2692728", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084824734"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12559-017-9473-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085170054", 
              "https://doi.org/10.1007/s12559-017-9473-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12559-017-9473-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085170054", 
              "https://doi.org/10.1007/s12559-017-9473-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12559-017-9494-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090933092", 
              "https://doi.org/10.1007/s12559-017-9494-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12559-017-9494-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090933092", 
              "https://doi.org/10.1007/s12559-017-9494-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12559-017-9504-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091224930", 
              "https://doi.org/10.1007/s12559-017-9504-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12559-017-9504-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091224930", 
              "https://doi.org/10.1007/s12559-017-9504-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2001.990517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093187020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cit.2016.87", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093513893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/radar.2007.374267", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093901041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/radar.2012.6212222", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094007041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icip.2002.1038171", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094303828"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/radar.2008.4721035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094515033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iciea.2008.4582866", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095616908"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12559-018-9602-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107340413", 
              "https://doi.org/10.1007/s12559-018-9602-9"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02", 
        "datePublishedReg": "2019-02-01", 
        "description": "High-frequency surface wave radar (HFSWR) has a vital civilian and military significance for ship target detection and tracking because of its wide visual field and large sea area coverage. However, most of the existing ship target detection methods of HFSWR face two main difficulties: (1) the received radar signals are strongly polluted by clutter and noises, and (2) it is difficult to detect ship targets in real-time due to high computational complexity. This paper presents a ship target detection algorithm to overcome the problems above by using a two-stage cascade classification structure. Firstly, to quickly obtain the target candidate regions, a simple gray-scale feature and a linear classifier were applied. Then, a new error self-adjustment extreme learning machine (ES-ELM) with Haar-like input features was adopted to further identify the target precisely in each candidate region. The proposed ES-ELM includes two parts: initialization part and updating part. In the former stage, the L1 regularizer process is adopted to find the sparse solution of output weights, to prune the useless neural nodes and to obtain the optimal number of hidden neurons. Also, to ensure an excellent generalization performance by the network, in the latter stage, the parameters of hidden layer are updated through several iterations using L2 regularizer process with pulled back error matrix. This process yields appropriate output weights and the appropriate hidden weights. Experimental results show that (1) compared with standard ELM, our proposed ES-ELM has higher classification accuracy and training efficiency, and the generalization performance is not sensitive to regularization parameter, (2) the proposed ship target detection algorithm based on ES-ELM outperforms most of the state-of-the-art methods for detection accuracy and computational efficiency.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s12559-018-9606-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7184474", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1041199", 
            "issn": [
              "1866-9956", 
              "1866-9964"
            ], 
            "name": "Cognitive Computation", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "11"
          }
        ], 
        "name": "A Novel Ship Target Detection Algorithm Based on Error Self-adjustment Extreme Learning Machine and Cascade Classifier", 
        "pagination": "110-124", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "13a94cd612b6a5ce9e262dcbb4721b9afdf11758d5053e65f127fc551c749258"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12559-018-9606-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1107803971"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12559-018-9606-5", 
          "https://app.dimensions.ai/details/publication/pub.1107803971"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:03", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89824_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs12559-018-9606-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12559-018-9606-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12559-018-9606-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12559-018-9606-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12559-018-9606-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    207 TRIPLES      21 PREDICATES      62 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12559-018-9606-5 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N790f82c070654fa2be5829d191c91756
    4 schema:citation sg:pub.10.1007/s12559-017-9473-5
    5 sg:pub.10.1007/s12559-017-9494-0
    6 sg:pub.10.1007/s12559-017-9504-2
    7 sg:pub.10.1007/s12559-018-9602-9
    8 sg:pub.10.1007/s13042-011-0019-y
    9 https://doi.org/10.1016/j.matcom.2011.01.016
    10 https://doi.org/10.1016/j.neucom.2005.12.126
    11 https://doi.org/10.1016/j.neucom.2007.02.009
    12 https://doi.org/10.1016/j.neucom.2007.10.008
    13 https://doi.org/10.1016/j.neucom.2017.01.064
    14 https://doi.org/10.1016/j.neunet.2014.10.001
    15 https://doi.org/10.1016/j.neunet.2016.06.001
    16 https://doi.org/10.1049/iet-rsn.2012.0062
    17 https://doi.org/10.1109/18.661502
    18 https://doi.org/10.1109/cit.2016.87
    19 https://doi.org/10.1109/cvpr.2001.990517
    20 https://doi.org/10.1109/iciea.2008.4582866
    21 https://doi.org/10.1109/icip.2002.1038171
    22 https://doi.org/10.1109/lgrs.2008.923211
    23 https://doi.org/10.1109/lgrs.2017.2673806
    24 https://doi.org/10.1109/radar.2007.374267
    25 https://doi.org/10.1109/radar.2008.4721035
    26 https://doi.org/10.1109/radar.2012.6212222
    27 https://doi.org/10.1109/taes.1983.309350
    28 https://doi.org/10.1109/tcyb.2015.2481713
    29 https://doi.org/10.1109/tcyb.2015.2492468
    30 https://doi.org/10.1109/tgrs.2010.2047022
    31 https://doi.org/10.1109/tgrs.2012.2188298
    32 https://doi.org/10.1109/tifs.2017.2692728
    33 https://doi.org/10.1109/tim.2013.2297631
    34 https://doi.org/10.1109/tnn.2006.875977
    35 https://doi.org/10.1109/tnn.2009.2024147
    36 https://doi.org/10.1109/tnn.2009.2036259
    37 https://doi.org/10.1109/tnnls.2012.2202289
    38 https://doi.org/10.1109/tsmcb.2011.2168604
    39 schema:datePublished 2019-02
    40 schema:datePublishedReg 2019-02-01
    41 schema:description High-frequency surface wave radar (HFSWR) has a vital civilian and military significance for ship target detection and tracking because of its wide visual field and large sea area coverage. However, most of the existing ship target detection methods of HFSWR face two main difficulties: (1) the received radar signals are strongly polluted by clutter and noises, and (2) it is difficult to detect ship targets in real-time due to high computational complexity. This paper presents a ship target detection algorithm to overcome the problems above by using a two-stage cascade classification structure. Firstly, to quickly obtain the target candidate regions, a simple gray-scale feature and a linear classifier were applied. Then, a new error self-adjustment extreme learning machine (ES-ELM) with Haar-like input features was adopted to further identify the target precisely in each candidate region. The proposed ES-ELM includes two parts: initialization part and updating part. In the former stage, the L1 regularizer process is adopted to find the sparse solution of output weights, to prune the useless neural nodes and to obtain the optimal number of hidden neurons. Also, to ensure an excellent generalization performance by the network, in the latter stage, the parameters of hidden layer are updated through several iterations using L2 regularizer process with pulled back error matrix. This process yields appropriate output weights and the appropriate hidden weights. Experimental results show that (1) compared with standard ELM, our proposed ES-ELM has higher classification accuracy and training efficiency, and the generalization performance is not sensitive to regularization parameter, (2) the proposed ship target detection algorithm based on ES-ELM outperforms most of the state-of-the-art methods for detection accuracy and computational efficiency.
    42 schema:genre research_article
    43 schema:inLanguage en
    44 schema:isAccessibleForFree false
    45 schema:isPartOf N0cf11bea8a7042eb810bce4dd9bd9466
    46 N4d159aed87f540d1b7cbdec5968727ca
    47 sg:journal.1041199
    48 schema:name A Novel Ship Target Detection Algorithm Based on Error Self-adjustment Extreme Learning Machine and Cascade Classifier
    49 schema:pagination 110-124
    50 schema:productId N925648b7b04f4a2a9581e8d8c1714fa6
    51 N97a020ac358a491188d81b791fe95719
    52 Ne0e872d59cfb4920aaf638e58324a208
    53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107803971
    54 https://doi.org/10.1007/s12559-018-9606-5
    55 schema:sdDatePublished 2019-04-11T10:03
    56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    57 schema:sdPublisher N670634ac85864794a522a5fdc96497d3
    58 schema:url https://link.springer.com/10.1007%2Fs12559-018-9606-5
    59 sgo:license sg:explorer/license/
    60 sgo:sdDataset articles
    61 rdf:type schema:ScholarlyArticle
    62 N0cf11bea8a7042eb810bce4dd9bd9466 schema:volumeNumber 11
    63 rdf:type schema:PublicationVolume
    64 N1c038f05fb264bb0a8c68c533f98d9c7 schema:affiliation https://www.grid.ac/institutes/grid.258900.6
    65 schema:familyName Yang
    66 schema:givenName Yimin
    67 rdf:type schema:Person
    68 N24d13f57e59f4410b2fa8a12b2e9891a rdf:first N1c038f05fb264bb0a8c68c533f98d9c7
    69 rdf:rest Nb06bbecc09d147509bdbe6dd97bbe46a
    70 N4d159aed87f540d1b7cbdec5968727ca schema:issueNumber 1
    71 rdf:type schema:PublicationIssue
    72 N670634ac85864794a522a5fdc96497d3 schema:name Springer Nature - SN SciGraph project
    73 rdf:type schema:Organization
    74 N790f82c070654fa2be5829d191c91756 rdf:first sg:person.016007534710.00
    75 rdf:rest N912688f0de63401fa112d43362a81606
    76 N84af2af48d564a94a8cb73a82be5f611 rdf:first sg:person.015515226365.07
    77 rdf:rest N24d13f57e59f4410b2fa8a12b2e9891a
    78 N912688f0de63401fa112d43362a81606 rdf:first sg:person.013617213310.89
    79 rdf:rest N84af2af48d564a94a8cb73a82be5f611
    80 N925648b7b04f4a2a9581e8d8c1714fa6 schema:name doi
    81 schema:value 10.1007/s12559-018-9606-5
    82 rdf:type schema:PropertyValue
    83 N97a020ac358a491188d81b791fe95719 schema:name dimensions_id
    84 schema:value pub.1107803971
    85 rdf:type schema:PropertyValue
    86 Nb06bbecc09d147509bdbe6dd97bbe46a rdf:first sg:person.016531731565.98
    87 rdf:rest rdf:nil
    88 Ne0e872d59cfb4920aaf638e58324a208 schema:name readcube_id
    89 schema:value 13a94cd612b6a5ce9e262dcbb4721b9afdf11758d5053e65f127fc551c749258
    90 rdf:type schema:PropertyValue
    91 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    92 schema:name Information and Computing Sciences
    93 rdf:type schema:DefinedTerm
    94 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    95 schema:name Artificial Intelligence and Image Processing
    96 rdf:type schema:DefinedTerm
    97 sg:grant.7184474 http://pending.schema.org/fundedItem sg:pub.10.1007/s12559-018-9606-5
    98 rdf:type schema:MonetaryGrant
    99 sg:journal.1041199 schema:issn 1866-9956
    100 1866-9964
    101 schema:name Cognitive Computation
    102 rdf:type schema:Periodical
    103 sg:person.013617213310.89 schema:affiliation https://www.grid.ac/institutes/grid.4422.0
    104 schema:familyName Li
    105 schema:givenName Qingzhong
    106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013617213310.89
    107 rdf:type schema:Person
    108 sg:person.015515226365.07 schema:affiliation https://www.grid.ac/institutes/grid.267455.7
    109 schema:familyName Wu
    110 schema:givenName Q. M. Jonathan
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015515226365.07
    112 rdf:type schema:Person
    113 sg:person.016007534710.00 schema:affiliation https://www.grid.ac/institutes/grid.267455.7
    114 schema:familyName Zhang
    115 schema:givenName Wandong
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016007534710.00
    117 rdf:type schema:Person
    118 sg:person.016531731565.98 schema:affiliation https://www.grid.ac/institutes/grid.4422.0
    119 schema:familyName Li
    120 schema:givenName Ming
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016531731565.98
    122 rdf:type schema:Person
    123 sg:pub.10.1007/s12559-017-9473-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085170054
    124 https://doi.org/10.1007/s12559-017-9473-5
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/s12559-017-9494-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090933092
    127 https://doi.org/10.1007/s12559-017-9494-0
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/s12559-017-9504-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091224930
    130 https://doi.org/10.1007/s12559-017-9504-2
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/s12559-018-9602-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107340413
    133 https://doi.org/10.1007/s12559-018-9602-9
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/s13042-011-0019-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1031892380
    136 https://doi.org/10.1007/s13042-011-0019-y
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1016/j.matcom.2011.01.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036994836
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1016/j.neucom.2005.12.126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038265102
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1016/j.neucom.2007.02.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013207250
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/j.neucom.2007.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035637386
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/j.neucom.2017.01.064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083700079
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/j.neunet.2014.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045581577
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1016/j.neunet.2016.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040287578
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1049/iet-rsn.2012.0062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056836171
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1109/18.661502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061100600
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1109/cit.2016.87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093513893
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1109/cvpr.2001.990517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093187020
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1109/iciea.2008.4582866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095616908
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1109/icip.2002.1038171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094303828
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1109/lgrs.2008.923211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061358758
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1109/lgrs.2017.2673806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084203662
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1109/radar.2007.374267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093901041
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1109/radar.2008.4721035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094515033
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1109/radar.2012.6212222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094007041
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1109/taes.1983.309350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061483800
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1109/tcyb.2015.2481713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061580110
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1109/tcyb.2015.2492468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061580137
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1109/tgrs.2010.2047022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061611447
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1109/tgrs.2012.2188298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061612278
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1109/tifs.2017.2692728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084824734
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1109/tim.2013.2297631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061639781
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1109/tnn.2006.875977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717036
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1109/tnn.2009.2024147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717572
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1109/tnn.2009.2036259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717641
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1109/tnnls.2012.2202289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010062582
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1109/tsmcb.2011.2168604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006047450
    197 rdf:type schema:CreativeWork
    198 https://www.grid.ac/institutes/grid.258900.6 schema:alternateName Lakehead University
    199 schema:name Department of Computer Science, Lakehead University, Thunder Bay, ON, Canada
    200 rdf:type schema:Organization
    201 https://www.grid.ac/institutes/grid.267455.7 schema:alternateName University of Windsor
    202 schema:name Department of Electronic and Computer Engineering, University of Windsor, Windosr, ON, Canada
    203 Department of Engineering, Ocean University of China, Qingdao, Shandong, China
    204 rdf:type schema:Organization
    205 https://www.grid.ac/institutes/grid.4422.0 schema:alternateName Ocean University of China
    206 schema:name Department of Engineering, Ocean University of China, Qingdao, Shandong, China
    207 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...