Quasi-Quantum Computing in the Brain? View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-06

AUTHORS

Pentti O. A. Haikonen

ABSTRACT

Quantum computing has been seen as a potentially powerful computing method, and consequently some researchers have argued that the brain might somehow utilize quantum computing processes. In the laboratory, quantum computing calls for exotic conditions, and it has been argued that the brain cannot provide these. Here, a novel computing method, quasi-quantum computing, is presented. This method utilizes the main principles of quantum computing: superposition, entanglement and collapse, but in this case, computing is not based on quantum processes; instead, it is realized by utilizing conventional electronic devices in rather unconventional ways. As an example of the potential of this approach, the reverse computing of mathematical functions is considered, and an experimental test device is reported. Some aspects of this approach may be used by the brain as no exotic conditions are required. However, further research would be required. More... »

PAGES

63-67

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12559-010-9032-9

DOI

http://dx.doi.org/10.1007/s12559-010-9032-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006982370


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Illinois at Springfield", 
          "id": "https://www.grid.ac/institutes/grid.266464.4", 
          "name": [
            "Department of Philosophy, University of Illinois at Springfield, One University Plaza, 62703, Springfield, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haikonen", 
        "givenName": "Pentti O. A.", 
        "id": "sg:person.016233320647.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016233320647.18"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2010-06", 
    "datePublishedReg": "2010-06-01", 
    "description": "Quantum computing has been seen as a potentially powerful computing method, and consequently some researchers have argued that the brain might somehow utilize quantum computing processes. In the laboratory, quantum computing calls for exotic conditions, and it has been argued that the brain cannot provide these. Here, a novel computing method, quasi-quantum computing, is presented. This method utilizes the main principles of quantum computing: superposition, entanglement and collapse, but in this case, computing is not based on quantum processes; instead, it is realized by utilizing conventional electronic devices in rather unconventional ways. As an example of the potential of this approach, the reverse computing of mathematical functions is considered, and an experimental test device is reported. Some aspects of this approach may be used by the brain as no exotic conditions are required. However, further research would be required.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12559-010-9032-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041199", 
        "issn": [
          "1866-9956", 
          "1866-9964"
        ], 
        "name": "Cognitive Computation", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "name": "Quasi-Quantum Computing in the Brain?", 
    "pagination": "63-67", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2142d7e8540b6e04669676fcb40f9d7163ed06bc2aa99916e1058d2ffe25e20b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12559-010-9032-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006982370"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12559-010-9032-9", 
      "https://app.dimensions.ai/details/publication/pub.1006982370"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000520.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs12559-010-9032-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12559-010-9032-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12559-010-9032-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12559-010-9032-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12559-010-9032-9'


 

This table displays all metadata directly associated to this object as RDF triples.

61 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12559-010-9032-9 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author N96639609e0e7402f8edc34915f906d3f
4 schema:datePublished 2010-06
5 schema:datePublishedReg 2010-06-01
6 schema:description Quantum computing has been seen as a potentially powerful computing method, and consequently some researchers have argued that the brain might somehow utilize quantum computing processes. In the laboratory, quantum computing calls for exotic conditions, and it has been argued that the brain cannot provide these. Here, a novel computing method, quasi-quantum computing, is presented. This method utilizes the main principles of quantum computing: superposition, entanglement and collapse, but in this case, computing is not based on quantum processes; instead, it is realized by utilizing conventional electronic devices in rather unconventional ways. As an example of the potential of this approach, the reverse computing of mathematical functions is considered, and an experimental test device is reported. Some aspects of this approach may be used by the brain as no exotic conditions are required. However, further research would be required.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N47b7d1e0a24f4a00b98fd34f8b1298a8
11 Nec90ee3d1dfa488ab4979b15631824dd
12 sg:journal.1041199
13 schema:name Quasi-Quantum Computing in the Brain?
14 schema:pagination 63-67
15 schema:productId N08a8f664058b4717b7f50a3dce37374b
16 N6cd5b6955cdc400a978bcd0229dce313
17 Na527e3278929455ba750ea4668235c4c
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006982370
19 https://doi.org/10.1007/s12559-010-9032-9
20 schema:sdDatePublished 2019-04-10T13:19
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Na0dd3cbf8f9e4d17b4b10b2f9b569de4
23 schema:url http://link.springer.com/10.1007%2Fs12559-010-9032-9
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N08a8f664058b4717b7f50a3dce37374b schema:name readcube_id
28 schema:value 2142d7e8540b6e04669676fcb40f9d7163ed06bc2aa99916e1058d2ffe25e20b
29 rdf:type schema:PropertyValue
30 N47b7d1e0a24f4a00b98fd34f8b1298a8 schema:issueNumber 2
31 rdf:type schema:PublicationIssue
32 N6cd5b6955cdc400a978bcd0229dce313 schema:name dimensions_id
33 schema:value pub.1006982370
34 rdf:type schema:PropertyValue
35 N96639609e0e7402f8edc34915f906d3f rdf:first sg:person.016233320647.18
36 rdf:rest rdf:nil
37 Na0dd3cbf8f9e4d17b4b10b2f9b569de4 schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 Na527e3278929455ba750ea4668235c4c schema:name doi
40 schema:value 10.1007/s12559-010-9032-9
41 rdf:type schema:PropertyValue
42 Nec90ee3d1dfa488ab4979b15631824dd schema:volumeNumber 2
43 rdf:type schema:PublicationVolume
44 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
45 schema:name Physical Sciences
46 rdf:type schema:DefinedTerm
47 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
48 schema:name Quantum Physics
49 rdf:type schema:DefinedTerm
50 sg:journal.1041199 schema:issn 1866-9956
51 1866-9964
52 schema:name Cognitive Computation
53 rdf:type schema:Periodical
54 sg:person.016233320647.18 schema:affiliation https://www.grid.ac/institutes/grid.266464.4
55 schema:familyName Haikonen
56 schema:givenName Pentti O. A.
57 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016233320647.18
58 rdf:type schema:Person
59 https://www.grid.ac/institutes/grid.266464.4 schema:alternateName University of Illinois at Springfield
60 schema:name Department of Philosophy, University of Illinois at Springfield, One University Plaza, 62703, Springfield, IL, USA
61 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...