Genetic Algorithm-based Discrete Continuum Robot Design Methodology for Transoral Slave Robotic System View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-08-27

AUTHORS

Yeoun-Jae Kim, Jueun Choi, Jaesoon Choi, Youngjin Moon

ABSTRACT

Total unit number, unit length, and maximum bending angle of units are major design parameters in a discrete continuum robot. In this paper, a discrete continuum robot design methodology is suggested to determine the major design parameters for the transoral robotic surgery using a genetic algorithm (GA) based parameter optimization. If the transoral passage of a patient is reconstructed, a transoral passage-optimized discrete continuum robot can be designed using the proposed design methodology. In the proposed design methodology, a unit with a ball-socket joint is chosen to satisfy the clinical design requirements of a transoral continuum robot; moreover, the kinematics of the section in the discrete continuum robot is analyzed. Using these results, a two-section tendon-driven discrete continuum robot is designed to follow a reference transoral passage with minimal control effort by parametric optimization using a GA. The effectiveness of the proposed methodology is shown through an example using path trackability simulation and validation tests were performed to compare the design assumptions and real situations. More... »

PAGES

3361-3371

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12555-021-0824-3

DOI

http://dx.doi.org/10.1007/s12555-021-0824-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1150553863


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0910", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Manufacturing Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0913", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mechanical Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.413967.e", 
          "name": [
            "Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Yeoun-Jae", 
        "id": "sg:person.015530611721.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015530611721.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biomedical Engineering, Asan Medical Center, University of Ulsan College of Medicine, 05505, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.413967.e", 
          "name": [
            "Department of Biomedical Engineering, Asan Medical Center, University of Ulsan College of Medicine, 05505, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Jueun", 
        "id": "sg:person.015633445511.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015633445511.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biomedical Engineering, Asan Medical Center, University of Ulsan College of Medicine, 05505, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.413967.e", 
          "name": [
            "Department of Biomedical Engineering, Asan Medical Center, University of Ulsan College of Medicine, 05505, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Jaesoon", 
        "id": "sg:person.01225630101.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225630101.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.413967.e", 
          "name": [
            "Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moon", 
        "givenName": "Youngjin", 
        "id": "sg:person.015717327425.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015717327425.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10439-019-02241-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112703170", 
          "https://doi.org/10.1007/s10439-019-02241-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11701-019-00941-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112541020", 
          "https://doi.org/10.1007/s11701-019-00941-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00405-019-05767-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1123771223", 
          "https://doi.org/10.1007/s00405-019-05767-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/s10434-019-07802-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1120943218", 
          "https://doi.org/10.1245/s10434-019-07802-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11548-019-01972-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1113483329", 
          "https://doi.org/10.1007/s11548-019-01972-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12555-019-1007-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1127705934", 
          "https://doi.org/10.1007/s12555-019-1007-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11517-020-02217-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1129098510", 
          "https://doi.org/10.1007/s11517-020-02217-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11548-017-1672-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092101308", 
          "https://doi.org/10.1007/s11548-017-1672-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-08-27", 
    "datePublishedReg": "2022-08-27", 
    "description": "Total unit number, unit length, and maximum bending angle of units are major design parameters in a discrete continuum robot. In this paper, a discrete continuum robot design methodology is suggested to determine the major design parameters for the transoral robotic surgery using a genetic algorithm (GA) based parameter optimization. If the transoral passage of a patient is reconstructed, a transoral passage-optimized discrete continuum robot can be designed using the proposed design methodology. In the proposed design methodology, a unit with a ball-socket joint is chosen to satisfy the clinical design requirements of a transoral continuum robot; moreover, the kinematics of the section in the discrete continuum robot is analyzed. Using these results, a two-section tendon-driven discrete continuum robot is designed to follow a reference transoral passage with minimal control effort by parametric optimization using a GA. The effectiveness of the proposed methodology is shown through an example using path trackability simulation and validation tests were performed to compare the design assumptions and real situations.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12555-021-0824-3", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041911", 
        "issn": [
          "1598-6446", 
          "2005-4092"
        ], 
        "name": "International Journal of Control, Automation and Systems", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "keywords": [
      "continuum robots", 
      "major design parameters", 
      "design methodology", 
      "design parameters", 
      "robot design methodology", 
      "slave robotic system", 
      "minimal control effort", 
      "genetic algorithm", 
      "ball-socket joint", 
      "parametric optimization", 
      "design requirements", 
      "design assumptions", 
      "robotic system", 
      "parameter optimization", 
      "robot", 
      "validation tests", 
      "optimization", 
      "algorithm", 
      "real situation", 
      "unit length", 
      "control efforts", 
      "parameters", 
      "methodology", 
      "simulations", 
      "robotic surgery", 
      "joints", 
      "unit number", 
      "angle", 
      "kinematics", 
      "requirements", 
      "units", 
      "system", 
      "test", 
      "effectiveness", 
      "results", 
      "length", 
      "passage", 
      "example", 
      "sections", 
      "situation", 
      "transoral robotic surgery", 
      "assumption", 
      "efforts", 
      "number", 
      "surgery", 
      "patients", 
      "paper"
    ], 
    "name": "Genetic Algorithm-based Discrete Continuum Robot Design Methodology for Transoral Slave Robotic System", 
    "pagination": "3361-3371", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1150553863"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12555-021-0824-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12555-021-0824-3", 
      "https://app.dimensions.ai/details/publication/pub.1150553863"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_953.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12555-021-0824-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12555-021-0824-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12555-021-0824-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12555-021-0824-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12555-021-0824-3'


 

This table displays all metadata directly associated to this object as RDF triples.

169 TRIPLES      21 PREDICATES      81 URIs      63 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12555-021-0824-3 schema:about anzsrc-for:09
2 anzsrc-for:0906
3 anzsrc-for:0910
4 anzsrc-for:0913
5 schema:author N2d23846f84e441e5ad4e272ad6b727ad
6 schema:citation sg:pub.10.1007/s00405-019-05767-0
7 sg:pub.10.1007/s10439-019-02241-0
8 sg:pub.10.1007/s11517-020-02217-6
9 sg:pub.10.1007/s11548-017-1672-8
10 sg:pub.10.1007/s11548-019-01972-8
11 sg:pub.10.1007/s11701-019-00941-2
12 sg:pub.10.1007/s12555-019-1007-3
13 sg:pub.10.1245/s10434-019-07802-0
14 schema:datePublished 2022-08-27
15 schema:datePublishedReg 2022-08-27
16 schema:description Total unit number, unit length, and maximum bending angle of units are major design parameters in a discrete continuum robot. In this paper, a discrete continuum robot design methodology is suggested to determine the major design parameters for the transoral robotic surgery using a genetic algorithm (GA) based parameter optimization. If the transoral passage of a patient is reconstructed, a transoral passage-optimized discrete continuum robot can be designed using the proposed design methodology. In the proposed design methodology, a unit with a ball-socket joint is chosen to satisfy the clinical design requirements of a transoral continuum robot; moreover, the kinematics of the section in the discrete continuum robot is analyzed. Using these results, a two-section tendon-driven discrete continuum robot is designed to follow a reference transoral passage with minimal control effort by parametric optimization using a GA. The effectiveness of the proposed methodology is shown through an example using path trackability simulation and validation tests were performed to compare the design assumptions and real situations.
17 schema:genre article
18 schema:isAccessibleForFree false
19 schema:isPartOf N4ff9cd1a64dc4c7c992a00034972ca29
20 Nc8c2cd0139ec42e0b9c914698df974d8
21 sg:journal.1041911
22 schema:keywords algorithm
23 angle
24 assumption
25 ball-socket joint
26 continuum robots
27 control efforts
28 design assumptions
29 design methodology
30 design parameters
31 design requirements
32 effectiveness
33 efforts
34 example
35 genetic algorithm
36 joints
37 kinematics
38 length
39 major design parameters
40 methodology
41 minimal control effort
42 number
43 optimization
44 paper
45 parameter optimization
46 parameters
47 parametric optimization
48 passage
49 patients
50 real situation
51 requirements
52 results
53 robot
54 robot design methodology
55 robotic surgery
56 robotic system
57 sections
58 simulations
59 situation
60 slave robotic system
61 surgery
62 system
63 test
64 transoral robotic surgery
65 unit length
66 unit number
67 units
68 validation tests
69 schema:name Genetic Algorithm-based Discrete Continuum Robot Design Methodology for Transoral Slave Robotic System
70 schema:pagination 3361-3371
71 schema:productId N7419bd620f2d42a58684746d54555226
72 Nb0559a8a37334b62a7ec0ec2ee8fc753
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1150553863
74 https://doi.org/10.1007/s12555-021-0824-3
75 schema:sdDatePublished 2022-11-24T21:10
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher N6da35e5e15de49258ac2f7ab2c643840
78 schema:url https://doi.org/10.1007/s12555-021-0824-3
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N1e13945daf0b490eae69602dbe563b37 rdf:first sg:person.015717327425.01
83 rdf:rest rdf:nil
84 N2d23846f84e441e5ad4e272ad6b727ad rdf:first sg:person.015530611721.34
85 rdf:rest Nfb8579688f2847568993583b04831dc0
86 N36122f2ea13441c3a20bde5d68ed44f5 rdf:first sg:person.01225630101.18
87 rdf:rest N1e13945daf0b490eae69602dbe563b37
88 N4ff9cd1a64dc4c7c992a00034972ca29 schema:issueNumber 10
89 rdf:type schema:PublicationIssue
90 N6da35e5e15de49258ac2f7ab2c643840 schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 N7419bd620f2d42a58684746d54555226 schema:name dimensions_id
93 schema:value pub.1150553863
94 rdf:type schema:PropertyValue
95 Nb0559a8a37334b62a7ec0ec2ee8fc753 schema:name doi
96 schema:value 10.1007/s12555-021-0824-3
97 rdf:type schema:PropertyValue
98 Nc8c2cd0139ec42e0b9c914698df974d8 schema:volumeNumber 20
99 rdf:type schema:PublicationVolume
100 Nfb8579688f2847568993583b04831dc0 rdf:first sg:person.015633445511.30
101 rdf:rest N36122f2ea13441c3a20bde5d68ed44f5
102 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
103 schema:name Engineering
104 rdf:type schema:DefinedTerm
105 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
106 schema:name Electrical and Electronic Engineering
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0910 schema:inDefinedTermSet anzsrc-for:
109 schema:name Manufacturing Engineering
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0913 schema:inDefinedTermSet anzsrc-for:
112 schema:name Mechanical Engineering
113 rdf:type schema:DefinedTerm
114 sg:journal.1041911 schema:issn 1598-6446
115 2005-4092
116 schema:name International Journal of Control, Automation and Systems
117 schema:publisher Springer Nature
118 rdf:type schema:Periodical
119 sg:person.01225630101.18 schema:affiliation grid-institutes:grid.413967.e
120 schema:familyName Choi
121 schema:givenName Jaesoon
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225630101.18
123 rdf:type schema:Person
124 sg:person.015530611721.34 schema:affiliation grid-institutes:grid.413967.e
125 schema:familyName Kim
126 schema:givenName Yeoun-Jae
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015530611721.34
128 rdf:type schema:Person
129 sg:person.015633445511.30 schema:affiliation grid-institutes:grid.413967.e
130 schema:familyName Choi
131 schema:givenName Jueun
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015633445511.30
133 rdf:type schema:Person
134 sg:person.015717327425.01 schema:affiliation grid-institutes:grid.413967.e
135 schema:familyName Moon
136 schema:givenName Youngjin
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015717327425.01
138 rdf:type schema:Person
139 sg:pub.10.1007/s00405-019-05767-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123771223
140 https://doi.org/10.1007/s00405-019-05767-0
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s10439-019-02241-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112703170
143 https://doi.org/10.1007/s10439-019-02241-0
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s11517-020-02217-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129098510
146 https://doi.org/10.1007/s11517-020-02217-6
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s11548-017-1672-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092101308
149 https://doi.org/10.1007/s11548-017-1672-8
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s11548-019-01972-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113483329
152 https://doi.org/10.1007/s11548-019-01972-8
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s11701-019-00941-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112541020
155 https://doi.org/10.1007/s11701-019-00941-2
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s12555-019-1007-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1127705934
158 https://doi.org/10.1007/s12555-019-1007-3
159 rdf:type schema:CreativeWork
160 sg:pub.10.1245/s10434-019-07802-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120943218
161 https://doi.org/10.1245/s10434-019-07802-0
162 rdf:type schema:CreativeWork
163 grid-institutes:grid.413967.e schema:alternateName Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Korea
164 Department of Biomedical Engineering, Asan Medical Center, University of Ulsan College of Medicine, 05505, Seoul, Korea
165 Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Korea
166 schema:name Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Korea
167 Department of Biomedical Engineering, Asan Medical Center, University of Ulsan College of Medicine, 05505, Seoul, Korea
168 Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Korea
169 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...