Fault Diagnosis Method of Escalator Step System Based on Vibration Signal Analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-08-27

AUTHORS

Fuqiang You, Dianlong Wang, Guanghai Li, Chunhua Chen

ABSTRACT

For the problem that escalator fault diagnosis is difficult to realize, this paper proposes a fault diagnosis method based on vibration signal analysis. The vibration signal is collected from three parts: step guide rail, main drive shaft and main engine. The wavelet threshold denoising algorithm based on Ensemble Empirical Mode Decomposition (EEMD) is used to denoise the vibration signal. The signal characteristics are extracted, and the fault detection is performed through the Support Vector Machine (SVM) fault detection model. For the fault signal, the improved envelope spectrum analysis method is used to extract the characteristic frequency and corresponding amplitude to form the characteristic vector, and the Support Vector Machine for Particle Swarm Optimization (PSO-SVM) algorithm is used to identify the location of the fault. The experimental results show that this method has high accuracy in the fault diagnosis of escalator step system. More... »

PAGES

3222-3232

References to SciGraph publications

  • 2014-08-15. Pitting Detection in Worm Gearboxes with Vibration Analysis in VIBRATION ENGINEERING AND TECHNOLOGY OF MACHINERY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12555-021-0443-z

    DOI

    http://dx.doi.org/10.1007/s12555-021-0443-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1150553851


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Electrical and Electronic Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0910", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Manufacturing Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0913", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mechanical Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "College of Information Science and Engineer, Northeastern University, 3 Wenhua Road, Heping District, 110819, Shenyang, China", 
              "id": "http://www.grid.ac/institutes/grid.412252.2", 
              "name": [
                "College of Information Science and Engineer, Northeastern University, 3 Wenhua Road, Heping District, 110819, Shenyang, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "You", 
            "givenName": "Fuqiang", 
            "id": "sg:person.016043004311.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016043004311.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "College of Information Science and Engineer, Northeastern University, 3 Wenhua Road, Heping District, 110819, Shenyang, China", 
              "id": "http://www.grid.ac/institutes/grid.412252.2", 
              "name": [
                "College of Information Science and Engineer, Northeastern University, 3 Wenhua Road, Heping District, 110819, Shenyang, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Dianlong", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "China Special Equipment Inspection and Research Institute, No. 2, Xiyuan, Heping Street, Chaoyang District, 100029, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.495297.4", 
              "name": [
                "China Special Equipment Inspection and Research Institute, No. 2, Xiyuan, Heping Street, Chaoyang District, 100029, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Guanghai", 
            "id": "sg:person.015573724625.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015573724625.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "College of Information Science and Engineer, Northeastern University, 3 Wenhua Road, Heping District, 110819, Shenyang, China", 
              "id": "http://www.grid.ac/institutes/grid.412252.2", 
              "name": [
                "College of Information Science and Engineer, Northeastern University, 3 Wenhua Road, Heping District, 110819, Shenyang, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Chunhua", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-319-09918-7_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014674020", 
              "https://doi.org/10.1007/978-3-319-09918-7_20"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-08-27", 
        "datePublishedReg": "2022-08-27", 
        "description": "For the problem that escalator fault diagnosis is difficult to realize, this paper proposes a fault diagnosis method based on vibration signal analysis. The vibration signal is collected from three parts: step guide rail, main drive shaft and main engine. The wavelet threshold denoising algorithm based on Ensemble Empirical Mode Decomposition (EEMD) is used to denoise the vibration signal. The signal characteristics are extracted, and the fault detection is performed through the Support Vector Machine (SVM) fault detection model. For the fault signal, the improved envelope spectrum analysis method is used to extract the characteristic frequency and corresponding amplitude to form the characteristic vector, and the Support Vector Machine for Particle Swarm Optimization (PSO-SVM) algorithm is used to identify the location of the fault. The experimental results show that this method has high accuracy in the fault diagnosis of escalator step system.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s12555-021-0443-z", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1041911", 
            "issn": [
              "1598-6446", 
              "2005-4092"
            ], 
            "name": "International Journal of Control, Automation and Systems", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "20"
          }
        ], 
        "keywords": [
          "vibration signal analysis", 
          "ensemble empirical mode decomposition", 
          "fault diagnosis method", 
          "vibration signals", 
          "fault diagnosis", 
          "signal analysis", 
          "diagnosis method", 
          "main drive shaft", 
          "fault signals", 
          "drive shaft", 
          "spectrum analysis method", 
          "guide rail", 
          "particle swarm optimization algorithm", 
          "wavelet threshold", 
          "empirical mode decomposition", 
          "fault detection", 
          "step system", 
          "swarm optimization algorithm", 
          "main engine", 
          "mode decomposition", 
          "support vector machine", 
          "experimental results", 
          "characteristic frequency", 
          "signal characteristics", 
          "optimization algorithm", 
          "vector machine", 
          "high accuracy", 
          "analysis method", 
          "signals", 
          "rail", 
          "machine", 
          "engine", 
          "characteristic vectors", 
          "shaft", 
          "method", 
          "faults", 
          "system", 
          "algorithm", 
          "detection model", 
          "decomposition", 
          "amplitude", 
          "accuracy", 
          "characteristics", 
          "frequency", 
          "analysis", 
          "model", 
          "location", 
          "results", 
          "problem", 
          "detection", 
          "part", 
          "threshold", 
          "vector", 
          "diagnosis", 
          "paper"
        ], 
        "name": "Fault Diagnosis Method of Escalator Step System Based on Vibration Signal Analysis", 
        "pagination": "3222-3232", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1150553851"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12555-021-0443-z"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12555-021-0443-z", 
          "https://app.dimensions.ai/details/publication/pub.1150553851"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T21:09", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_925.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s12555-021-0443-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12555-021-0443-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12555-021-0443-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12555-021-0443-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12555-021-0443-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    146 TRIPLES      21 PREDICATES      82 URIs      71 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12555-021-0443-z schema:about anzsrc-for:09
    2 anzsrc-for:0906
    3 anzsrc-for:0910
    4 anzsrc-for:0913
    5 schema:author N17009518b78c429aa880f08f2ade4d2f
    6 schema:citation sg:pub.10.1007/978-3-319-09918-7_20
    7 schema:datePublished 2022-08-27
    8 schema:datePublishedReg 2022-08-27
    9 schema:description For the problem that escalator fault diagnosis is difficult to realize, this paper proposes a fault diagnosis method based on vibration signal analysis. The vibration signal is collected from three parts: step guide rail, main drive shaft and main engine. The wavelet threshold denoising algorithm based on Ensemble Empirical Mode Decomposition (EEMD) is used to denoise the vibration signal. The signal characteristics are extracted, and the fault detection is performed through the Support Vector Machine (SVM) fault detection model. For the fault signal, the improved envelope spectrum analysis method is used to extract the characteristic frequency and corresponding amplitude to form the characteristic vector, and the Support Vector Machine for Particle Swarm Optimization (PSO-SVM) algorithm is used to identify the location of the fault. The experimental results show that this method has high accuracy in the fault diagnosis of escalator step system.
    10 schema:genre article
    11 schema:isAccessibleForFree false
    12 schema:isPartOf Nb1bcd8ec269840f9a97dcef953a7f911
    13 Nfa6d531ae5d34197b67eec20cefb1ba2
    14 sg:journal.1041911
    15 schema:keywords accuracy
    16 algorithm
    17 amplitude
    18 analysis
    19 analysis method
    20 characteristic frequency
    21 characteristic vectors
    22 characteristics
    23 decomposition
    24 detection
    25 detection model
    26 diagnosis
    27 diagnosis method
    28 drive shaft
    29 empirical mode decomposition
    30 engine
    31 ensemble empirical mode decomposition
    32 experimental results
    33 fault detection
    34 fault diagnosis
    35 fault diagnosis method
    36 fault signals
    37 faults
    38 frequency
    39 guide rail
    40 high accuracy
    41 location
    42 machine
    43 main drive shaft
    44 main engine
    45 method
    46 mode decomposition
    47 model
    48 optimization algorithm
    49 paper
    50 part
    51 particle swarm optimization algorithm
    52 problem
    53 rail
    54 results
    55 shaft
    56 signal analysis
    57 signal characteristics
    58 signals
    59 spectrum analysis method
    60 step system
    61 support vector machine
    62 swarm optimization algorithm
    63 system
    64 threshold
    65 vector
    66 vector machine
    67 vibration signal analysis
    68 vibration signals
    69 wavelet threshold
    70 schema:name Fault Diagnosis Method of Escalator Step System Based on Vibration Signal Analysis
    71 schema:pagination 3222-3232
    72 schema:productId N08ec3730798246c498c8d92692fd794c
    73 N1f0a871cd4484d98bea12aef275d8038
    74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1150553851
    75 https://doi.org/10.1007/s12555-021-0443-z
    76 schema:sdDatePublished 2022-11-24T21:09
    77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    78 schema:sdPublisher Neb1f760755bf49d7b5b9662b8b648a72
    79 schema:url https://doi.org/10.1007/s12555-021-0443-z
    80 sgo:license sg:explorer/license/
    81 sgo:sdDataset articles
    82 rdf:type schema:ScholarlyArticle
    83 N08ccc0dd6b29483eb4c9ea2d677264df rdf:first N2363902f15d34823aa7ec879e8a9c8d9
    84 rdf:rest Ne0a7912aeccb4226a398d125fb9ca7f5
    85 N08ec3730798246c498c8d92692fd794c schema:name dimensions_id
    86 schema:value pub.1150553851
    87 rdf:type schema:PropertyValue
    88 N0ae0dacfcd64416796cb7a093dfcd11b rdf:first Nd7747657f4ec4cd0923835011f2afb5a
    89 rdf:rest rdf:nil
    90 N17009518b78c429aa880f08f2ade4d2f rdf:first sg:person.016043004311.95
    91 rdf:rest N08ccc0dd6b29483eb4c9ea2d677264df
    92 N1f0a871cd4484d98bea12aef275d8038 schema:name doi
    93 schema:value 10.1007/s12555-021-0443-z
    94 rdf:type schema:PropertyValue
    95 N2363902f15d34823aa7ec879e8a9c8d9 schema:affiliation grid-institutes:grid.412252.2
    96 schema:familyName Wang
    97 schema:givenName Dianlong
    98 rdf:type schema:Person
    99 Nb1bcd8ec269840f9a97dcef953a7f911 schema:issueNumber 10
    100 rdf:type schema:PublicationIssue
    101 Nd7747657f4ec4cd0923835011f2afb5a schema:affiliation grid-institutes:grid.412252.2
    102 schema:familyName Chen
    103 schema:givenName Chunhua
    104 rdf:type schema:Person
    105 Ne0a7912aeccb4226a398d125fb9ca7f5 rdf:first sg:person.015573724625.49
    106 rdf:rest N0ae0dacfcd64416796cb7a093dfcd11b
    107 Neb1f760755bf49d7b5b9662b8b648a72 schema:name Springer Nature - SN SciGraph project
    108 rdf:type schema:Organization
    109 Nfa6d531ae5d34197b67eec20cefb1ba2 schema:volumeNumber 20
    110 rdf:type schema:PublicationVolume
    111 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    112 schema:name Engineering
    113 rdf:type schema:DefinedTerm
    114 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
    115 schema:name Electrical and Electronic Engineering
    116 rdf:type schema:DefinedTerm
    117 anzsrc-for:0910 schema:inDefinedTermSet anzsrc-for:
    118 schema:name Manufacturing Engineering
    119 rdf:type schema:DefinedTerm
    120 anzsrc-for:0913 schema:inDefinedTermSet anzsrc-for:
    121 schema:name Mechanical Engineering
    122 rdf:type schema:DefinedTerm
    123 sg:journal.1041911 schema:issn 1598-6446
    124 2005-4092
    125 schema:name International Journal of Control, Automation and Systems
    126 schema:publisher Springer Nature
    127 rdf:type schema:Periodical
    128 sg:person.015573724625.49 schema:affiliation grid-institutes:grid.495297.4
    129 schema:familyName Li
    130 schema:givenName Guanghai
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015573724625.49
    132 rdf:type schema:Person
    133 sg:person.016043004311.95 schema:affiliation grid-institutes:grid.412252.2
    134 schema:familyName You
    135 schema:givenName Fuqiang
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016043004311.95
    137 rdf:type schema:Person
    138 sg:pub.10.1007/978-3-319-09918-7_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014674020
    139 https://doi.org/10.1007/978-3-319-09918-7_20
    140 rdf:type schema:CreativeWork
    141 grid-institutes:grid.412252.2 schema:alternateName College of Information Science and Engineer, Northeastern University, 3 Wenhua Road, Heping District, 110819, Shenyang, China
    142 schema:name College of Information Science and Engineer, Northeastern University, 3 Wenhua Road, Heping District, 110819, Shenyang, China
    143 rdf:type schema:Organization
    144 grid-institutes:grid.495297.4 schema:alternateName China Special Equipment Inspection and Research Institute, No. 2, Xiyuan, Heping Street, Chaoyang District, 100029, Beijing, China
    145 schema:name China Special Equipment Inspection and Research Institute, No. 2, Xiyuan, Heping Street, Chaoyang District, 100029, Beijing, China
    146 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...