A Continuous Finite-time Neural Network with Bias Noises for Convex Quadratic Bilevel Programming Problem View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-08-27

AUTHORS

Peng Miao, Fan Yang

ABSTRACT

A continuous finite-time neural network with bias noises is proposed to solve the convex quadratic bilevel programming problem in this paper. In order to solve the convex quadratic bilevel programming problem, it is transformed into a nonlinear programming problem based on the Kaeush-Kuhn-Tucker conditions. Then, a neural network is designed to solve this problem. Compared with the existing networks, the designed network contains biased noise. Furthermore, it is proved that the proposed neural network can converge to the equilibrium point in finite time and it is Lyapunov stable. Moreover, the robustness performance of the present neural network against bias noises is discussed and the effect is very good. At the same time, the upper bound of the steady-state error is estimated. Lastly, two numerical examples show the effectiveness of the proposed methods. More... »

PAGES

3045-3052

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12555-021-0230-x

DOI

http://dx.doi.org/10.1007/s12555-021-0230-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1150553847


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0910", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Manufacturing Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0913", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mechanical Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Basic Courses, Zhengzhou University of Science & Technology, 450064, Zhengzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.512433.2", 
          "name": [
            "Department of Basic Courses, Zhengzhou University of Science & Technology, 450064, Zhengzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miao", 
        "givenName": "Peng", 
        "id": "sg:person.013171260115.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013171260115.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Basic Courses, Zhengzhou University of Science & Technology, 450064, Zhengzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.512433.2", 
          "name": [
            "Department of Basic Courses, Zhengzhou University of Science & Technology, 450064, Zhengzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Fan", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10479-007-0176-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021001001", 
          "https://doi.org/10.1007/s10479-007-0176-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-018-3020-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100424499", 
          "https://doi.org/10.1007/s00500-018-3020-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11063-014-9397-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024014855", 
          "https://doi.org/10.1007/s11063-014-9397-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01580720", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002794577", 
          "https://doi.org/10.1007/bf01580720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10589-005-4612-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047390618", 
          "https://doi.org/10.1007/s10589-005-4612-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-25393-0_46", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084676222", 
          "https://doi.org/10.1007/978-3-319-25393-0_46"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10898-016-0478-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031234148", 
          "https://doi.org/10.1007/s10898-016-0478-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11063-009-9103-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008778659", 
          "https://doi.org/10.1007/s11063-009-9103-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-017-2926-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084022512", 
          "https://doi.org/10.1007/s00521-017-2926-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-018-03986-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111319603", 
          "https://doi.org/10.1007/s00521-018-03986-w"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-08-27", 
    "datePublishedReg": "2022-08-27", 
    "description": "A continuous finite-time neural network with bias noises is proposed to solve the convex quadratic bilevel programming problem in this paper. In order to solve the convex quadratic bilevel programming problem, it is transformed into a nonlinear programming problem based on the Kaeush-Kuhn-Tucker conditions. Then, a neural network is designed to solve this problem. Compared with the existing networks, the designed network contains biased noise. Furthermore, it is proved that the proposed neural network can converge to the equilibrium point in finite time and it is Lyapunov stable. Moreover, the robustness performance of the present neural network against bias noises is discussed and the effect is very good. At the same time, the upper bound of the steady-state error is estimated. Lastly, two numerical examples show the effectiveness of the proposed methods.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12555-021-0230-x", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041911", 
        "issn": [
          "1598-6446", 
          "2005-4092"
        ], 
        "name": "International Journal of Control, Automation and Systems", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "keywords": [
      "quadratic bilevel programming problem", 
      "convex quadratic bilevel programming problem", 
      "neural network", 
      "bilevel programming problem", 
      "programming problem", 
      "present neural network", 
      "network", 
      "nonlinear programming problem", 
      "robustness performance", 
      "Tucker conditions", 
      "bias noise", 
      "biased noise", 
      "noise", 
      "same time", 
      "steady-state error", 
      "finite time", 
      "performance", 
      "effectiveness", 
      "error", 
      "time", 
      "numerical examples", 
      "example", 
      "order", 
      "method", 
      "Lyapunov", 
      "equilibrium point", 
      "point", 
      "problem", 
      "conditions", 
      "effect", 
      "paper"
    ], 
    "name": "A Continuous Finite-time Neural Network with Bias Noises for Convex Quadratic Bilevel Programming Problem", 
    "pagination": "3045-3052", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1150553847"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12555-021-0230-x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12555-021-0230-x", 
      "https://app.dimensions.ai/details/publication/pub.1150553847"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_948.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12555-021-0230-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12555-021-0230-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12555-021-0230-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12555-021-0230-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12555-021-0230-x'


 

This table displays all metadata directly associated to this object as RDF triples.

142 TRIPLES      21 PREDICATES      67 URIs      47 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12555-021-0230-x schema:about anzsrc-for:09
2 anzsrc-for:0906
3 anzsrc-for:0910
4 anzsrc-for:0913
5 schema:author N182af4a871494e7c9fbc80bf5fa548e7
6 schema:citation sg:pub.10.1007/978-3-319-25393-0_46
7 sg:pub.10.1007/bf01580720
8 sg:pub.10.1007/s00500-018-3020-5
9 sg:pub.10.1007/s00521-017-2926-7
10 sg:pub.10.1007/s00521-018-03986-w
11 sg:pub.10.1007/s10479-007-0176-2
12 sg:pub.10.1007/s10589-005-4612-4
13 sg:pub.10.1007/s10898-016-0478-5
14 sg:pub.10.1007/s11063-009-9103-7
15 sg:pub.10.1007/s11063-014-9397-y
16 schema:datePublished 2022-08-27
17 schema:datePublishedReg 2022-08-27
18 schema:description A continuous finite-time neural network with bias noises is proposed to solve the convex quadratic bilevel programming problem in this paper. In order to solve the convex quadratic bilevel programming problem, it is transformed into a nonlinear programming problem based on the Kaeush-Kuhn-Tucker conditions. Then, a neural network is designed to solve this problem. Compared with the existing networks, the designed network contains biased noise. Furthermore, it is proved that the proposed neural network can converge to the equilibrium point in finite time and it is Lyapunov stable. Moreover, the robustness performance of the present neural network against bias noises is discussed and the effect is very good. At the same time, the upper bound of the steady-state error is estimated. Lastly, two numerical examples show the effectiveness of the proposed methods.
19 schema:genre article
20 schema:isAccessibleForFree false
21 schema:isPartOf Nb3b84f39ae7e42a48cdbdbda18e9757b
22 Nc59ae8397ee64af090484fd77c5ecc7f
23 sg:journal.1041911
24 schema:keywords Lyapunov
25 Tucker conditions
26 bias noise
27 biased noise
28 bilevel programming problem
29 conditions
30 convex quadratic bilevel programming problem
31 effect
32 effectiveness
33 equilibrium point
34 error
35 example
36 finite time
37 method
38 network
39 neural network
40 noise
41 nonlinear programming problem
42 numerical examples
43 order
44 paper
45 performance
46 point
47 present neural network
48 problem
49 programming problem
50 quadratic bilevel programming problem
51 robustness performance
52 same time
53 steady-state error
54 time
55 schema:name A Continuous Finite-time Neural Network with Bias Noises for Convex Quadratic Bilevel Programming Problem
56 schema:pagination 3045-3052
57 schema:productId N36c32407380542ef8e9f300f360c0709
58 Nef601639c00a4af4aeb286e8623a35e7
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1150553847
60 https://doi.org/10.1007/s12555-021-0230-x
61 schema:sdDatePublished 2022-12-01T06:44
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher Nb04c5b1e4a8c418189dd207e0ed07628
64 schema:url https://doi.org/10.1007/s12555-021-0230-x
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N182af4a871494e7c9fbc80bf5fa548e7 rdf:first sg:person.013171260115.54
69 rdf:rest Na2c20dfe9ae7444dbb96b454b1977341
70 N36c32407380542ef8e9f300f360c0709 schema:name dimensions_id
71 schema:value pub.1150553847
72 rdf:type schema:PropertyValue
73 Na2c20dfe9ae7444dbb96b454b1977341 rdf:first Na5c41872730545658e9ae2fb8d1ca326
74 rdf:rest rdf:nil
75 Na5c41872730545658e9ae2fb8d1ca326 schema:affiliation grid-institutes:grid.512433.2
76 schema:familyName Yang
77 schema:givenName Fan
78 rdf:type schema:Person
79 Nb04c5b1e4a8c418189dd207e0ed07628 schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 Nb3b84f39ae7e42a48cdbdbda18e9757b schema:issueNumber 9
82 rdf:type schema:PublicationIssue
83 Nc59ae8397ee64af090484fd77c5ecc7f schema:volumeNumber 20
84 rdf:type schema:PublicationVolume
85 Nef601639c00a4af4aeb286e8623a35e7 schema:name doi
86 schema:value 10.1007/s12555-021-0230-x
87 rdf:type schema:PropertyValue
88 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
89 schema:name Engineering
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
92 schema:name Electrical and Electronic Engineering
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0910 schema:inDefinedTermSet anzsrc-for:
95 schema:name Manufacturing Engineering
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0913 schema:inDefinedTermSet anzsrc-for:
98 schema:name Mechanical Engineering
99 rdf:type schema:DefinedTerm
100 sg:journal.1041911 schema:issn 1598-6446
101 2005-4092
102 schema:name International Journal of Control, Automation and Systems
103 schema:publisher Springer Nature
104 rdf:type schema:Periodical
105 sg:person.013171260115.54 schema:affiliation grid-institutes:grid.512433.2
106 schema:familyName Miao
107 schema:givenName Peng
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013171260115.54
109 rdf:type schema:Person
110 sg:pub.10.1007/978-3-319-25393-0_46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084676222
111 https://doi.org/10.1007/978-3-319-25393-0_46
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/bf01580720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002794577
114 https://doi.org/10.1007/bf01580720
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s00500-018-3020-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100424499
117 https://doi.org/10.1007/s00500-018-3020-5
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s00521-017-2926-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084022512
120 https://doi.org/10.1007/s00521-017-2926-7
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s00521-018-03986-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1111319603
123 https://doi.org/10.1007/s00521-018-03986-w
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s10479-007-0176-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021001001
126 https://doi.org/10.1007/s10479-007-0176-2
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s10589-005-4612-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047390618
129 https://doi.org/10.1007/s10589-005-4612-4
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s10898-016-0478-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031234148
132 https://doi.org/10.1007/s10898-016-0478-5
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s11063-009-9103-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008778659
135 https://doi.org/10.1007/s11063-009-9103-7
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s11063-014-9397-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1024014855
138 https://doi.org/10.1007/s11063-014-9397-y
139 rdf:type schema:CreativeWork
140 grid-institutes:grid.512433.2 schema:alternateName Department of Basic Courses, Zhengzhou University of Science & Technology, 450064, Zhengzhou, China
141 schema:name Department of Basic Courses, Zhengzhou University of Science & Technology, 450064, Zhengzhou, China
142 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...