Global Robust Synchronization of Fractional Order Complex Valued Neural Networks with Mixed Time Varying Delays and Impulses View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Pratap Anbalagan, Raja Ramachandran, Jinde Cao, Grienggrai Rajchakit, Chee Peng Lim

ABSTRACT

In this article, we explore the theoretical issues on the drive-response synchronization of a class of fractional order uncertain complex valued neural networks (FOUCNNs) with mixed time varying delays and impulses. Based upon the contraction mapping principle, robust analysis techniques, as well as Riemann-Liouville (R-L) derivative, we derive a new set of novel sufficient conditions for the existence and uniqueness of equilibrium point of such neural network system, while by applying the Lyapunov functional approach, the global stability of the equilibrium solutions are obtained. Furthermore, the synchronization criterion of FOUCNNs is also attracted by means of the adaptive error feedback control strategy. Finally, two examples are provided along with the simulation results to demonstrate the effectiveness of our main proofs. More... »

PAGES

1-12

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12555-017-0563-7

DOI

http://dx.doi.org/10.1007/s12555-017-0563-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111505630


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Alagappa University", 
          "id": "https://www.grid.ac/institutes/grid.411312.4", 
          "name": [
            "Department of Mathematics, Alagappa University, 630 004, Karaikudi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Anbalagan", 
        "givenName": "Pratap", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Alagappa University", 
          "id": "https://www.grid.ac/institutes/grid.411312.4", 
          "name": [
            "Ramanujan Centre for Higher Mathematics, Alagappa University, 630 004, Karaikudi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ramachandran", 
        "givenName": "Raja", 
        "id": "sg:person.014460630410.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014460630410.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shandong Normal University", 
          "id": "https://www.grid.ac/institutes/grid.410585.d", 
          "name": [
            "School of Mathematics, Southeast University, 211189, Nanjing, China", 
            "School of Mathematics and Statistics, Shandong Normal University, 250014, Ji\u2019nan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cao", 
        "givenName": "Jinde", 
        "id": "sg:person.01262551422.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262551422.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Maejo University", 
          "id": "https://www.grid.ac/institutes/grid.411558.c", 
          "name": [
            "Department of Mathematics, Faculty of Science, Maejo University, Chiang Mai, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rajchakit", 
        "givenName": "Grienggrai", 
        "id": "sg:person.011635755133.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011635755133.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Deakin University", 
          "id": "https://www.grid.ac/institutes/grid.1021.2", 
          "name": [
            "Institute of Intelligent System Research and Innovation, Deakin University, Deakin, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lim", 
        "givenName": "Chee Peng", 
        "id": "sg:person.014644360675.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014644360675.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.02.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001680615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfranklin.2016.06.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002326702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2017.01.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002698760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2013.11.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006044256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2016.01.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009714616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2016.01.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009714616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2015.09.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012891251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-014-1628-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013107926", 
          "https://doi.org/10.1007/s11071-014-1628-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-6042-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019431047", 
          "https://doi.org/10.1007/978-1-4020-6042-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-6042-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019431047", 
          "https://doi.org/10.1007/978-1-4020-6042-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-014-1681-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019514193", 
          "https://doi.org/10.1007/s11071-014-1681-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2016.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023339576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2016.07.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023445023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0252-9602(12)60072-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027400349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chaos.2015.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034027712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chaos.2003.12.081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035528384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2016.09.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042280135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-014-1725-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042796723", 
          "https://doi.org/10.1007/s11071-014-1725-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2014.11.068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044671208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-014-1375-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045138684", 
          "https://doi.org/10.1007/s11071-014-1375-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fss.2012.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052492337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2009.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053238190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/imamci/dnr030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059687475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.64.821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060800981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.64.821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060800981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.2016.2530041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061479977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsii.2009.2025625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061570110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11063-017-9590-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074207025", 
          "https://doi.org/10.1007/s11063-017-9590-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11063-017-9590-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074207025", 
          "https://doi.org/10.1007/s11063-017-9590-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.2017.2669580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083936418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfranklin.2017.05.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085606812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-017-3795-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091845512", 
          "https://doi.org/10.1007/s11071-017-3795-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matcom.2017.10.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092696736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ijcnn.2011.6033277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094028764"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "In this article, we explore the theoretical issues on the drive-response synchronization of a class of fractional order uncertain complex valued neural networks (FOUCNNs) with mixed time varying delays and impulses. Based upon the contraction mapping principle, robust analysis techniques, as well as Riemann-Liouville (R-L) derivative, we derive a new set of novel sufficient conditions for the existence and uniqueness of equilibrium point of such neural network system, while by applying the Lyapunov functional approach, the global stability of the equilibrium solutions are obtained. Furthermore, the synchronization criterion of FOUCNNs is also attracted by means of the adaptive error feedback control strategy. Finally, two examples are provided along with the simulation results to demonstrate the effectiveness of our main proofs.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12555-017-0563-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041911", 
        "issn": [
          "1598-6446", 
          "2005-4092"
        ], 
        "name": "International Journal of Control, Automation and Systems", 
        "type": "Periodical"
      }
    ], 
    "name": "Global Robust Synchronization of Fractional Order Complex Valued Neural Networks with Mixed Time Varying Delays and Impulses", 
    "pagination": "1-12", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "19641f3a7c1b79568b107f5ae758f22264485fe002e1c74199be7fa9461fb403"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12555-017-0563-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111505630"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12555-017-0563-7", 
      "https://app.dimensions.ai/details/publication/pub.1111505630"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000321_0000000321/records_74936_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12555-017-0563-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12555-017-0563-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12555-017-0563-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12555-017-0563-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12555-017-0563-7'


 

This table displays all metadata directly associated to this object as RDF triples.

190 TRIPLES      21 PREDICATES      55 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12555-017-0563-7 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N33b14fa89273430a864214354477014a
4 schema:citation sg:pub.10.1007/978-1-4020-6042-7
5 sg:pub.10.1007/s11063-017-9590-x
6 sg:pub.10.1007/s11071-014-1375-4
7 sg:pub.10.1007/s11071-014-1628-2
8 sg:pub.10.1007/s11071-014-1681-x
9 sg:pub.10.1007/s11071-014-1725-2
10 sg:pub.10.1007/s11071-017-3795-4
11 https://doi.org/10.1016/j.amc.2009.11.002
12 https://doi.org/10.1016/j.amc.2013.11.025
13 https://doi.org/10.1016/j.amc.2016.07.029
14 https://doi.org/10.1016/j.chaos.2003.12.081
15 https://doi.org/10.1016/j.chaos.2015.08.003
16 https://doi.org/10.1016/j.fss.2012.01.005
17 https://doi.org/10.1016/j.jfranklin.2016.06.029
18 https://doi.org/10.1016/j.jfranklin.2017.05.031
19 https://doi.org/10.1016/j.matcom.2017.10.016
20 https://doi.org/10.1016/j.neucom.2014.11.068
21 https://doi.org/10.1016/j.neucom.2015.02.015
22 https://doi.org/10.1016/j.neucom.2016.09.049
23 https://doi.org/10.1016/j.neucom.2017.01.014
24 https://doi.org/10.1016/j.neunet.2015.09.012
25 https://doi.org/10.1016/j.neunet.2016.01.006
26 https://doi.org/10.1016/j.neunet.2016.05.003
27 https://doi.org/10.1016/s0252-9602(12)60072-1
28 https://doi.org/10.1093/imamci/dnr030
29 https://doi.org/10.1103/physrevlett.64.821
30 https://doi.org/10.1109/ijcnn.2011.6033277
31 https://doi.org/10.1109/tac.2016.2530041
32 https://doi.org/10.1109/tac.2017.2669580
33 https://doi.org/10.1109/tcsii.2009.2025625
34 schema:datePublished 2019-02
35 schema:datePublishedReg 2019-02-01
36 schema:description In this article, we explore the theoretical issues on the drive-response synchronization of a class of fractional order uncertain complex valued neural networks (FOUCNNs) with mixed time varying delays and impulses. Based upon the contraction mapping principle, robust analysis techniques, as well as Riemann-Liouville (R-L) derivative, we derive a new set of novel sufficient conditions for the existence and uniqueness of equilibrium point of such neural network system, while by applying the Lyapunov functional approach, the global stability of the equilibrium solutions are obtained. Furthermore, the synchronization criterion of FOUCNNs is also attracted by means of the adaptive error feedback control strategy. Finally, two examples are provided along with the simulation results to demonstrate the effectiveness of our main proofs.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf sg:journal.1041911
41 schema:name Global Robust Synchronization of Fractional Order Complex Valued Neural Networks with Mixed Time Varying Delays and Impulses
42 schema:pagination 1-12
43 schema:productId N03bdf475110a427b8a5223a86699164d
44 N24c9d0bac06c4c1cbd8d7b1d5c554070
45 N9f73f1daf1a34ecd9747de6d434cc46d
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111505630
47 https://doi.org/10.1007/s12555-017-0563-7
48 schema:sdDatePublished 2019-04-11T08:42
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N20c1c1eae69e4441a2171962b58f9ccb
51 schema:url https://link.springer.com/10.1007%2Fs12555-017-0563-7
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N03bdf475110a427b8a5223a86699164d schema:name readcube_id
56 schema:value 19641f3a7c1b79568b107f5ae758f22264485fe002e1c74199be7fa9461fb403
57 rdf:type schema:PropertyValue
58 N0a10e232cfd44f13a34fca7831f22f36 rdf:first sg:person.014460630410.41
59 rdf:rest N2a035db263a046d0ae2d2669ee90f179
60 N20c1c1eae69e4441a2171962b58f9ccb schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N24c9d0bac06c4c1cbd8d7b1d5c554070 schema:name doi
63 schema:value 10.1007/s12555-017-0563-7
64 rdf:type schema:PropertyValue
65 N2a035db263a046d0ae2d2669ee90f179 rdf:first sg:person.01262551422.69
66 rdf:rest N2dd99cfc2ceb40bd8a922233f1c35f8b
67 N2dd99cfc2ceb40bd8a922233f1c35f8b rdf:first sg:person.011635755133.31
68 rdf:rest N80de0d5569a54adfbacfcf015b493606
69 N33b14fa89273430a864214354477014a rdf:first N9d788ffefbd94b4c8cf952cae0e16ef0
70 rdf:rest N0a10e232cfd44f13a34fca7831f22f36
71 N80de0d5569a54adfbacfcf015b493606 rdf:first sg:person.014644360675.43
72 rdf:rest rdf:nil
73 N9d788ffefbd94b4c8cf952cae0e16ef0 schema:affiliation https://www.grid.ac/institutes/grid.411312.4
74 schema:familyName Anbalagan
75 schema:givenName Pratap
76 rdf:type schema:Person
77 N9f73f1daf1a34ecd9747de6d434cc46d schema:name dimensions_id
78 schema:value pub.1111505630
79 rdf:type schema:PropertyValue
80 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
81 schema:name Information and Computing Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
84 schema:name Artificial Intelligence and Image Processing
85 rdf:type schema:DefinedTerm
86 sg:journal.1041911 schema:issn 1598-6446
87 2005-4092
88 schema:name International Journal of Control, Automation and Systems
89 rdf:type schema:Periodical
90 sg:person.011635755133.31 schema:affiliation https://www.grid.ac/institutes/grid.411558.c
91 schema:familyName Rajchakit
92 schema:givenName Grienggrai
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011635755133.31
94 rdf:type schema:Person
95 sg:person.01262551422.69 schema:affiliation https://www.grid.ac/institutes/grid.410585.d
96 schema:familyName Cao
97 schema:givenName Jinde
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262551422.69
99 rdf:type schema:Person
100 sg:person.014460630410.41 schema:affiliation https://www.grid.ac/institutes/grid.411312.4
101 schema:familyName Ramachandran
102 schema:givenName Raja
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014460630410.41
104 rdf:type schema:Person
105 sg:person.014644360675.43 schema:affiliation https://www.grid.ac/institutes/grid.1021.2
106 schema:familyName Lim
107 schema:givenName Chee Peng
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014644360675.43
109 rdf:type schema:Person
110 sg:pub.10.1007/978-1-4020-6042-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019431047
111 https://doi.org/10.1007/978-1-4020-6042-7
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s11063-017-9590-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1074207025
114 https://doi.org/10.1007/s11063-017-9590-x
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s11071-014-1375-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045138684
117 https://doi.org/10.1007/s11071-014-1375-4
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s11071-014-1628-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013107926
120 https://doi.org/10.1007/s11071-014-1628-2
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s11071-014-1681-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019514193
123 https://doi.org/10.1007/s11071-014-1681-x
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s11071-014-1725-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042796723
126 https://doi.org/10.1007/s11071-014-1725-2
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s11071-017-3795-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091845512
129 https://doi.org/10.1007/s11071-017-3795-4
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.amc.2009.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053238190
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.amc.2013.11.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006044256
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.amc.2016.07.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023445023
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.chaos.2003.12.081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035528384
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.chaos.2015.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034027712
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.fss.2012.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052492337
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.jfranklin.2016.06.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002326702
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.jfranklin.2017.05.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085606812
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.matcom.2017.10.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092696736
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.neucom.2014.11.068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044671208
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.neucom.2015.02.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001680615
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.neucom.2016.09.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042280135
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.neucom.2017.01.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002698760
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.neunet.2015.09.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012891251
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.neunet.2016.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009714616
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.neunet.2016.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023339576
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/s0252-9602(12)60072-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027400349
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1093/imamci/dnr030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059687475
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevlett.64.821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060800981
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1109/ijcnn.2011.6033277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094028764
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/tac.2016.2530041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061479977
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/tac.2017.2669580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083936418
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1109/tcsii.2009.2025625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061570110
176 rdf:type schema:CreativeWork
177 https://www.grid.ac/institutes/grid.1021.2 schema:alternateName Deakin University
178 schema:name Institute of Intelligent System Research and Innovation, Deakin University, Deakin, Australia
179 rdf:type schema:Organization
180 https://www.grid.ac/institutes/grid.410585.d schema:alternateName Shandong Normal University
181 schema:name School of Mathematics and Statistics, Shandong Normal University, 250014, Ji’nan, China
182 School of Mathematics, Southeast University, 211189, Nanjing, China
183 rdf:type schema:Organization
184 https://www.grid.ac/institutes/grid.411312.4 schema:alternateName Alagappa University
185 schema:name Department of Mathematics, Alagappa University, 630 004, Karaikudi, India
186 Ramanujan Centre for Higher Mathematics, Alagappa University, 630 004, Karaikudi, India
187 rdf:type schema:Organization
188 https://www.grid.ac/institutes/grid.411558.c schema:alternateName Maejo University
189 schema:name Department of Mathematics, Faculty of Science, Maejo University, Chiang Mai, Thailand
190 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...