Analysis on robust passivity of uncertain neural networks with time-varying delays via free-matrix-based integral inequality View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-10

AUTHORS

Shen-Ping Xiao, Hong-Hai Lian, Hong-Bing Zeng, Gang Chen, Wei-Hua Zheng

ABSTRACT

This paper investigates the robust delay-dependent passivity problem of neural networks (NNs) with time-varying delays and parameter uncertainties. A suitable augmented Lyapunov-Krasovskii functional (LKF) with triple integral term, which takes full use of the neuron activation function conditions and the information of time-delay in integral term, is constructed. Furthermore, by utilizing integral inequality proposed recently and the combining reciprocally convex method to estimate the derivative of the LKF, some less conservative robust passivity conditions are derived in terms of LMI. The superiority of presented approaches are demonstrated via two classic numerical examples. More... »

PAGES

2385-2394

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12555-016-0315-0

DOI

http://dx.doi.org/10.1007/s12555-016-0315-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090832809


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hunan University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.411431.2", 
          "name": [
            "School of Electrical and Information Engineering, Hunan University of Technology, 412008, Hunan, China", 
            "Key Laboratory for Electric Drive Control and Intelligent Equipment of Hunan Province, 412008, Zhuzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiao", 
        "givenName": "Shen-Ping", 
        "id": "sg:person.07572434757.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07572434757.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hunan University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.411431.2", 
          "name": [
            "School of Electrical and Information Engineering, Hunan University of Technology, 412008, Hunan, China", 
            "Key Laboratory for Electric Drive Control and Intelligent Equipment of Hunan Province, 412008, Zhuzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lian", 
        "givenName": "Hong-Hai", 
        "id": "sg:person.010762246135.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010762246135.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hunan University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.411431.2", 
          "name": [
            "School of Electrical and Information Engineering, Hunan University of Technology, 412008, Hunan, China", 
            "Key Laboratory for Electric Drive Control and Intelligent Equipment of Hunan Province, 412008, Zhuzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zeng", 
        "givenName": "Hong-Bing", 
        "id": "sg:person.014560140443.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014560140443.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hunan University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.411431.2", 
          "name": [
            "School of Electrical and Information Engineering, Hunan University of Technology, 412008, Hunan, China", 
            "Key Laboratory for Electric Drive Control and Intelligent Equipment of Hunan Province, 412008, Zhuzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Gang", 
        "id": "sg:person.016152063255.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016152063255.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hunan University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.411431.2", 
          "name": [
            "School of Electrical and Information Engineering, Hunan University of Technology, 412008, Hunan, China", 
            "Key Laboratory for Electric Drive Control and Intelligent Equipment of Hunan Province, 412008, Zhuzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Wei-Hua", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s12555-013-0403-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002082756", 
          "https://doi.org/10.1007/s12555-013-0403-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfranklin.2015.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005520448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nonrwa.2011.11.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005754444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2012.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007658839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2012.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007658839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-014-1646-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011530295", 
          "https://doi.org/10.1007/s11071-014-1646-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2009.10.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016305285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2014.02.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019063714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2010.09.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021448796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1022889105", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-84628-517-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022889105", 
          "https://doi.org/10.1007/978-1-84628-517-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-84628-517-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022889105", 
          "https://doi.org/10.1007/978-1-84628-517-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2010.10.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032303085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.05.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032689257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2014.07.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034742949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfranklin.2014.12.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036571446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2015.08.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038852723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-013-0932-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039180687", 
          "https://doi.org/10.1007/s11071-013-0932-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.isatra.2014.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043227461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2009.01.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044096153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2013.05.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044667730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/602828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045011281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.07.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046746250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.07.101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046909260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2016.02.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047903939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2016.02.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047903939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/31.7601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061153348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.822526", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061219388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.2015.2404271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061479459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsii.2009.2015399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061570044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcyb.2014.2323994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061579696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tfuzz.2012.2226941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061606631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2015.2449898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061718902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511754494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098708416"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-10", 
    "datePublishedReg": "2017-10-01", 
    "description": "This paper investigates the robust delay-dependent passivity problem of neural networks (NNs) with time-varying delays and parameter uncertainties. A suitable augmented Lyapunov-Krasovskii functional (LKF) with triple integral term, which takes full use of the neuron activation function conditions and the information of time-delay in integral term, is constructed. Furthermore, by utilizing integral inequality proposed recently and the combining reciprocally convex method to estimate the derivative of the LKF, some less conservative robust passivity conditions are derived in terms of LMI. The superiority of presented approaches are demonstrated via two classic numerical examples.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12555-016-0315-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041911", 
        "issn": [
          "1598-6446", 
          "2005-4092"
        ], 
        "name": "International Journal of Control, Automation and Systems", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "Analysis on robust passivity of uncertain neural networks with time-varying delays via free-matrix-based integral inequality", 
    "pagination": "2385-2394", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bf77d1e18472659cde21cd67c8f085da1bb5394a24a109085c940b2a26b646b1"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12555-016-0315-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090832809"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12555-016-0315-0", 
      "https://app.dimensions.ai/details/publication/pub.1090832809"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113641_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12555-016-0315-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12555-016-0315-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12555-016-0315-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12555-016-0315-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12555-016-0315-0'


 

This table displays all metadata directly associated to this object as RDF triples.

185 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12555-016-0315-0 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author N1f2afe66916849b2b06884d6eb3f62d4
4 schema:citation sg:pub.10.1007/978-1-84628-517-2
5 sg:pub.10.1007/s11071-013-0932-6
6 sg:pub.10.1007/s11071-014-1646-0
7 sg:pub.10.1007/s12555-013-0403-3
8 https://app.dimensions.ai/details/publication/pub.1022889105
9 https://doi.org/10.1016/j.amc.2012.05.002
10 https://doi.org/10.1016/j.automatica.2010.10.014
11 https://doi.org/10.1016/j.automatica.2013.05.030
12 https://doi.org/10.1016/j.automatica.2015.08.025
13 https://doi.org/10.1016/j.isatra.2014.11.005
14 https://doi.org/10.1016/j.jfranklin.2014.12.023
15 https://doi.org/10.1016/j.jfranklin.2015.01.004
16 https://doi.org/10.1016/j.neucom.2009.10.010
17 https://doi.org/10.1016/j.neucom.2010.09.020
18 https://doi.org/10.1016/j.neucom.2014.07.024
19 https://doi.org/10.1016/j.neucom.2015.05.050
20 https://doi.org/10.1016/j.neucom.2015.07.033
21 https://doi.org/10.1016/j.neucom.2015.07.101
22 https://doi.org/10.1016/j.neucom.2016.02.051
23 https://doi.org/10.1016/j.neunet.2014.02.012
24 https://doi.org/10.1016/j.nonrwa.2011.11.017
25 https://doi.org/10.1016/j.physleta.2009.01.047
26 https://doi.org/10.1017/cbo9780511754494
27 https://doi.org/10.1109/31.7601
28 https://doi.org/10.1109/72.822526
29 https://doi.org/10.1109/tac.2015.2404271
30 https://doi.org/10.1109/tcsii.2009.2015399
31 https://doi.org/10.1109/tcyb.2014.2323994
32 https://doi.org/10.1109/tfuzz.2012.2226941
33 https://doi.org/10.1109/tnnls.2015.2449898
34 https://doi.org/10.1155/2014/602828
35 schema:datePublished 2017-10
36 schema:datePublishedReg 2017-10-01
37 schema:description This paper investigates the robust delay-dependent passivity problem of neural networks (NNs) with time-varying delays and parameter uncertainties. A suitable augmented Lyapunov-Krasovskii functional (LKF) with triple integral term, which takes full use of the neuron activation function conditions and the information of time-delay in integral term, is constructed. Furthermore, by utilizing integral inequality proposed recently and the combining reciprocally convex method to estimate the derivative of the LKF, some less conservative robust passivity conditions are derived in terms of LMI. The superiority of presented approaches are demonstrated via two classic numerical examples.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N3f149fb43d054e85ba65356648e5ae91
42 Nb0a3383988144147a5354d4a090b1cf0
43 sg:journal.1041911
44 schema:name Analysis on robust passivity of uncertain neural networks with time-varying delays via free-matrix-based integral inequality
45 schema:pagination 2385-2394
46 schema:productId N196f80bc61f7449d9f84cf4a2cb9a60d
47 N9534ef9ef7c14c489c86a09f5de33337
48 N9e5a49ac0b614ccb8a69794c0ccd636e
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090832809
50 https://doi.org/10.1007/s12555-016-0315-0
51 schema:sdDatePublished 2019-04-11T10:29
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Na62e3616d4794024973406938b493c33
54 schema:url https://link.springer.com/10.1007%2Fs12555-016-0315-0
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N00ff0767a19d4695a15c96df1d69be35 schema:affiliation https://www.grid.ac/institutes/grid.411431.2
59 schema:familyName Zheng
60 schema:givenName Wei-Hua
61 rdf:type schema:Person
62 N08c43343f12048e0b31d8ff9d8fc6f06 rdf:first N00ff0767a19d4695a15c96df1d69be35
63 rdf:rest rdf:nil
64 N196f80bc61f7449d9f84cf4a2cb9a60d schema:name dimensions_id
65 schema:value pub.1090832809
66 rdf:type schema:PropertyValue
67 N1f2afe66916849b2b06884d6eb3f62d4 rdf:first sg:person.07572434757.64
68 rdf:rest N3aa3ccbabecd444fa343710c0fb4422e
69 N3aa3ccbabecd444fa343710c0fb4422e rdf:first sg:person.010762246135.18
70 rdf:rest N5b39d3dfc12b48c58998223a5bd305c8
71 N3f149fb43d054e85ba65356648e5ae91 schema:volumeNumber 15
72 rdf:type schema:PublicationVolume
73 N5b39d3dfc12b48c58998223a5bd305c8 rdf:first sg:person.014560140443.76
74 rdf:rest N8dee93b1a7424e5a80380a904b05c160
75 N8dee93b1a7424e5a80380a904b05c160 rdf:first sg:person.016152063255.73
76 rdf:rest N08c43343f12048e0b31d8ff9d8fc6f06
77 N9534ef9ef7c14c489c86a09f5de33337 schema:name doi
78 schema:value 10.1007/s12555-016-0315-0
79 rdf:type schema:PropertyValue
80 N9e5a49ac0b614ccb8a69794c0ccd636e schema:name readcube_id
81 schema:value bf77d1e18472659cde21cd67c8f085da1bb5394a24a109085c940b2a26b646b1
82 rdf:type schema:PropertyValue
83 Na62e3616d4794024973406938b493c33 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 Nb0a3383988144147a5354d4a090b1cf0 schema:issueNumber 5
86 rdf:type schema:PublicationIssue
87 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
88 schema:name Medical and Health Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
91 schema:name Neurosciences
92 rdf:type schema:DefinedTerm
93 sg:journal.1041911 schema:issn 1598-6446
94 2005-4092
95 schema:name International Journal of Control, Automation and Systems
96 rdf:type schema:Periodical
97 sg:person.010762246135.18 schema:affiliation https://www.grid.ac/institutes/grid.411431.2
98 schema:familyName Lian
99 schema:givenName Hong-Hai
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010762246135.18
101 rdf:type schema:Person
102 sg:person.014560140443.76 schema:affiliation https://www.grid.ac/institutes/grid.411431.2
103 schema:familyName Zeng
104 schema:givenName Hong-Bing
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014560140443.76
106 rdf:type schema:Person
107 sg:person.016152063255.73 schema:affiliation https://www.grid.ac/institutes/grid.411431.2
108 schema:familyName Chen
109 schema:givenName Gang
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016152063255.73
111 rdf:type schema:Person
112 sg:person.07572434757.64 schema:affiliation https://www.grid.ac/institutes/grid.411431.2
113 schema:familyName Xiao
114 schema:givenName Shen-Ping
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07572434757.64
116 rdf:type schema:Person
117 sg:pub.10.1007/978-1-84628-517-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022889105
118 https://doi.org/10.1007/978-1-84628-517-2
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s11071-013-0932-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039180687
121 https://doi.org/10.1007/s11071-013-0932-6
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s11071-014-1646-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011530295
124 https://doi.org/10.1007/s11071-014-1646-0
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s12555-013-0403-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002082756
127 https://doi.org/10.1007/s12555-013-0403-3
128 rdf:type schema:CreativeWork
129 https://app.dimensions.ai/details/publication/pub.1022889105 schema:CreativeWork
130 https://doi.org/10.1016/j.amc.2012.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007658839
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.automatica.2010.10.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032303085
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.automatica.2013.05.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044667730
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.automatica.2015.08.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038852723
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.isatra.2014.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043227461
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.jfranklin.2014.12.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036571446
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.jfranklin.2015.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005520448
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.neucom.2009.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016305285
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.neucom.2010.09.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021448796
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.neucom.2014.07.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034742949
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.neucom.2015.05.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032689257
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.neucom.2015.07.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046746250
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.neucom.2015.07.101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046909260
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.neucom.2016.02.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047903939
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.neunet.2014.02.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019063714
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.nonrwa.2011.11.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005754444
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.physleta.2009.01.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044096153
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1017/cbo9780511754494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098708416
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/31.7601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061153348
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1109/72.822526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219388
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1109/tac.2015.2404271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061479459
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1109/tcsii.2009.2015399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061570044
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1109/tcyb.2014.2323994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061579696
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1109/tfuzz.2012.2226941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061606631
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1109/tnnls.2015.2449898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061718902
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1155/2014/602828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045011281
181 rdf:type schema:CreativeWork
182 https://www.grid.ac/institutes/grid.411431.2 schema:alternateName Hunan University of Technology
183 schema:name Key Laboratory for Electric Drive Control and Intelligent Equipment of Hunan Province, 412008, Zhuzhou, China
184 School of Electrical and Information Engineering, Hunan University of Technology, 412008, Hunan, China
185 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...