Visual servoing based on efficient histogram information View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-06-27

AUTHORS

Hajer Abidi, Mohamed Chtourou, Khaled Kaaniche, Hassen Mekki

ABSTRACT

The robustness of a visual servoing task depends mainly on the efficiency of visual selections captured from a sensor at each robot’s position. A task function could be described as a regulation of the values sent via the control law to the camera velocities. In this paper we propose a new approach that does not depend on matching and tracking results. Thus, we replaced the classical minimization cost by a new function based on probability distributions and Bhattacharyya distance. To guarantee more robustness, the information related to the observed images was expressed using a combination of orientation selections. The new visual selections are computed by referring to the disposition of Histograms of Oriented Gradients (HOG) bins. For each bin we assign a random variable representing gradient vectors in a particular direction. The new entries will not be used to establish equations of visual motion but they will be directly inserted into the control loop. A new formulation of the interaction matrix has been presented according to the optical flow constraint and using an interpolation function which leads to a more efficient control behaviour and to more positioning accuracy. Experiments demonstrate the robustness of the proposed approach with respect to varying work space conditions. More... »

PAGES

1746-1753

References to SciGraph publications

  • 2004-11. Distinctive Image Features from Scale-Invariant Keypoints in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12555-016-0070-2

    DOI

    http://dx.doi.org/10.1007/s12555-016-0070-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1090282277


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Electrical and Electronic Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0910", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Manufacturing Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0913", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mechanical Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Control and Energy Management Laboratory, Sfax University, Sfax, Tunisia", 
              "id": "http://www.grid.ac/institutes/grid.412124.0", 
              "name": [
                "Control and Energy Management Laboratory, Sfax University, Sfax, Tunisia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Abidi", 
            "givenName": "Hajer", 
            "id": "sg:person.011606512074.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011606512074.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Control and Energy Management Laboratory, Sfax University, Sfax, Tunisia", 
              "id": "http://www.grid.ac/institutes/grid.412124.0", 
              "name": [
                "Control and Energy Management Laboratory, Sfax University, Sfax, Tunisia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chtourou", 
            "givenName": "Mohamed", 
            "id": "sg:person.014041526632.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014041526632.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Engineering School of Sousse, Sousse University, Sousse, Tunisia", 
              "id": "http://www.grid.ac/institutes/grid.7900.e", 
              "name": [
                "National Engineering School of Sousse, Sousse University, Sousse, Tunisia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kaaniche", 
            "givenName": "Khaled", 
            "id": "sg:person.012301073607.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012301073607.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Engineering School of Sousse, Sousse University, Sousse, Tunisia", 
              "id": "http://www.grid.ac/institutes/grid.7900.e", 
              "name": [
                "National Engineering School of Sousse, Sousse University, Sousse, Tunisia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mekki", 
            "givenName": "Hassen", 
            "id": "sg:person.015440270475.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015440270475.79"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/b:visi.0000029664.99615.94", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052687286", 
              "https://doi.org/10.1023/b:visi.0000029664.99615.94"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-06-27", 
        "datePublishedReg": "2017-06-27", 
        "description": "The robustness of a visual servoing task depends mainly on the efficiency of visual selections captured from a sensor at each robot\u2019s position. A task function could be described as a regulation of the values sent via the control law to the camera velocities. In this paper we propose a new approach that does not depend on matching and tracking results. Thus, we replaced the classical minimization cost by a new function based on probability distributions and Bhattacharyya distance. To guarantee more robustness, the information related to the observed images was expressed using a combination of orientation selections. The new visual selections are computed by referring to the disposition of Histograms of Oriented Gradients (HOG) bins. For each bin we assign a random variable representing gradient vectors in a particular direction. The new entries will not be used to establish equations of visual motion but they will be directly inserted into the control loop. A new formulation of the interaction matrix has been presented according to the optical flow constraint and using an interpolation function which leads to a more efficient control behaviour and to more positioning accuracy. Experiments demonstrate the robustness of the proposed approach with respect to varying work space conditions.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s12555-016-0070-2", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1041911", 
            "issn": [
              "1598-6446", 
              "2005-4092"
            ], 
            "name": "International Journal of Control, Automation and Systems", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "15"
          }
        ], 
        "keywords": [
          "optical flow constraint", 
          "control law", 
          "probability distribution", 
          "visual servoing tasks", 
          "flow constraints", 
          "camera velocity", 
          "interpolation functions", 
          "gradient vector", 
          "robot position", 
          "control loop", 
          "visual servoing", 
          "histogram information", 
          "interaction matrix", 
          "tracking results", 
          "new formulation", 
          "task function", 
          "minimization cost", 
          "more robustness", 
          "Bhattacharyya distance", 
          "robustness", 
          "observed images", 
          "particular direction", 
          "orientation selection", 
          "equations", 
          "space conditions", 
          "new approach", 
          "positioning accuracy", 
          "control behaviors", 
          "servoing", 
          "motion", 
          "information", 
          "function", 
          "bins", 
          "constraints", 
          "formulation", 
          "velocity", 
          "approach", 
          "task", 
          "histogram", 
          "matrix", 
          "law", 
          "images", 
          "selection", 
          "new functions", 
          "accuracy", 
          "vector", 
          "loop", 
          "sensors", 
          "distribution", 
          "new entry", 
          "visual motion", 
          "position", 
          "cost", 
          "direction", 
          "visual selection", 
          "distance", 
          "respect", 
          "efficiency", 
          "behavior", 
          "experiments", 
          "conditions", 
          "results", 
          "values", 
          "combination", 
          "entry", 
          "disposition", 
          "regulation", 
          "paper"
        ], 
        "name": "Visual servoing based on efficient histogram information", 
        "pagination": "1746-1753", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1090282277"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12555-016-0070-2"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12555-016-0070-2", 
          "https://app.dimensions.ai/details/publication/pub.1090282277"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_719.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s12555-016-0070-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12555-016-0070-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12555-016-0070-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12555-016-0070-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12555-016-0070-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    161 TRIPLES      21 PREDICATES      95 URIs      84 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12555-016-0070-2 schema:about anzsrc-for:09
    2 anzsrc-for:0906
    3 anzsrc-for:0910
    4 anzsrc-for:0913
    5 schema:author Nb1eca60b0bb243c3879d33ddd8ee7911
    6 schema:citation sg:pub.10.1023/b:visi.0000029664.99615.94
    7 schema:datePublished 2017-06-27
    8 schema:datePublishedReg 2017-06-27
    9 schema:description The robustness of a visual servoing task depends mainly on the efficiency of visual selections captured from a sensor at each robot’s position. A task function could be described as a regulation of the values sent via the control law to the camera velocities. In this paper we propose a new approach that does not depend on matching and tracking results. Thus, we replaced the classical minimization cost by a new function based on probability distributions and Bhattacharyya distance. To guarantee more robustness, the information related to the observed images was expressed using a combination of orientation selections. The new visual selections are computed by referring to the disposition of Histograms of Oriented Gradients (HOG) bins. For each bin we assign a random variable representing gradient vectors in a particular direction. The new entries will not be used to establish equations of visual motion but they will be directly inserted into the control loop. A new formulation of the interaction matrix has been presented according to the optical flow constraint and using an interpolation function which leads to a more efficient control behaviour and to more positioning accuracy. Experiments demonstrate the robustness of the proposed approach with respect to varying work space conditions.
    10 schema:genre article
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N1b864fc1fe76468486bfce7ff7829217
    13 Na302cd7ff73c4ed09f95b067f8a84434
    14 sg:journal.1041911
    15 schema:keywords Bhattacharyya distance
    16 accuracy
    17 approach
    18 behavior
    19 bins
    20 camera velocity
    21 combination
    22 conditions
    23 constraints
    24 control behaviors
    25 control law
    26 control loop
    27 cost
    28 direction
    29 disposition
    30 distance
    31 distribution
    32 efficiency
    33 entry
    34 equations
    35 experiments
    36 flow constraints
    37 formulation
    38 function
    39 gradient vector
    40 histogram
    41 histogram information
    42 images
    43 information
    44 interaction matrix
    45 interpolation functions
    46 law
    47 loop
    48 matrix
    49 minimization cost
    50 more robustness
    51 motion
    52 new approach
    53 new entry
    54 new formulation
    55 new functions
    56 observed images
    57 optical flow constraint
    58 orientation selection
    59 paper
    60 particular direction
    61 position
    62 positioning accuracy
    63 probability distribution
    64 regulation
    65 respect
    66 results
    67 robot position
    68 robustness
    69 selection
    70 sensors
    71 servoing
    72 space conditions
    73 task
    74 task function
    75 tracking results
    76 values
    77 vector
    78 velocity
    79 visual motion
    80 visual selection
    81 visual servoing
    82 visual servoing tasks
    83 schema:name Visual servoing based on efficient histogram information
    84 schema:pagination 1746-1753
    85 schema:productId N4d46cefaa3284a82bd8a5a15f24a9eca
    86 Nffca0fe209b2429a9ce6a7fdb35c92a1
    87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090282277
    88 https://doi.org/10.1007/s12555-016-0070-2
    89 schema:sdDatePublished 2022-12-01T06:36
    90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    91 schema:sdPublisher N30a64ac885a44a2fa74d6895486c8514
    92 schema:url https://doi.org/10.1007/s12555-016-0070-2
    93 sgo:license sg:explorer/license/
    94 sgo:sdDataset articles
    95 rdf:type schema:ScholarlyArticle
    96 N1b864fc1fe76468486bfce7ff7829217 schema:volumeNumber 15
    97 rdf:type schema:PublicationVolume
    98 N30a64ac885a44a2fa74d6895486c8514 schema:name Springer Nature - SN SciGraph project
    99 rdf:type schema:Organization
    100 N4d46cefaa3284a82bd8a5a15f24a9eca schema:name doi
    101 schema:value 10.1007/s12555-016-0070-2
    102 rdf:type schema:PropertyValue
    103 N6c8b148eced6411a8fd3e7c088b29aed rdf:first sg:person.014041526632.19
    104 rdf:rest Ndebe5cddd8184a56901f5688912cee6f
    105 Na302cd7ff73c4ed09f95b067f8a84434 schema:issueNumber 4
    106 rdf:type schema:PublicationIssue
    107 Nb1eca60b0bb243c3879d33ddd8ee7911 rdf:first sg:person.011606512074.26
    108 rdf:rest N6c8b148eced6411a8fd3e7c088b29aed
    109 Ndebe5cddd8184a56901f5688912cee6f rdf:first sg:person.012301073607.54
    110 rdf:rest Nff480abbec9644a7b55bfe4d91bcbd8d
    111 Nff480abbec9644a7b55bfe4d91bcbd8d rdf:first sg:person.015440270475.79
    112 rdf:rest rdf:nil
    113 Nffca0fe209b2429a9ce6a7fdb35c92a1 schema:name dimensions_id
    114 schema:value pub.1090282277
    115 rdf:type schema:PropertyValue
    116 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    117 schema:name Engineering
    118 rdf:type schema:DefinedTerm
    119 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
    120 schema:name Electrical and Electronic Engineering
    121 rdf:type schema:DefinedTerm
    122 anzsrc-for:0910 schema:inDefinedTermSet anzsrc-for:
    123 schema:name Manufacturing Engineering
    124 rdf:type schema:DefinedTerm
    125 anzsrc-for:0913 schema:inDefinedTermSet anzsrc-for:
    126 schema:name Mechanical Engineering
    127 rdf:type schema:DefinedTerm
    128 sg:journal.1041911 schema:issn 1598-6446
    129 2005-4092
    130 schema:name International Journal of Control, Automation and Systems
    131 schema:publisher Springer Nature
    132 rdf:type schema:Periodical
    133 sg:person.011606512074.26 schema:affiliation grid-institutes:grid.412124.0
    134 schema:familyName Abidi
    135 schema:givenName Hajer
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011606512074.26
    137 rdf:type schema:Person
    138 sg:person.012301073607.54 schema:affiliation grid-institutes:grid.7900.e
    139 schema:familyName Kaaniche
    140 schema:givenName Khaled
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012301073607.54
    142 rdf:type schema:Person
    143 sg:person.014041526632.19 schema:affiliation grid-institutes:grid.412124.0
    144 schema:familyName Chtourou
    145 schema:givenName Mohamed
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014041526632.19
    147 rdf:type schema:Person
    148 sg:person.015440270475.79 schema:affiliation grid-institutes:grid.7900.e
    149 schema:familyName Mekki
    150 schema:givenName Hassen
    151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015440270475.79
    152 rdf:type schema:Person
    153 sg:pub.10.1023/b:visi.0000029664.99615.94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052687286
    154 https://doi.org/10.1023/b:visi.0000029664.99615.94
    155 rdf:type schema:CreativeWork
    156 grid-institutes:grid.412124.0 schema:alternateName Control and Energy Management Laboratory, Sfax University, Sfax, Tunisia
    157 schema:name Control and Energy Management Laboratory, Sfax University, Sfax, Tunisia
    158 rdf:type schema:Organization
    159 grid-institutes:grid.7900.e schema:alternateName National Engineering School of Sousse, Sousse University, Sousse, Tunisia
    160 schema:name National Engineering School of Sousse, Sousse University, Sousse, Tunisia
    161 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...