Sequences feature vectors extracting method for similarity measurement based on wavelet and matrix transforming View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-04

AUTHORS

Zhi-kun Hu, Wei-hua Gui, Chun-hua Yang, Fei Xu

ABSTRACT

A feature vectors extracting method for similarity measurement between a referenced sequence and an analyzed sequence is proposed. The referenced sequence and analyzed sequence are compressed into two wavelet matrices by Discrete Orthogonal Wavelet Transform (DOWT), respectively. A singular value vector and the multi-subspaces of the referenced matrix are derived from wavelet matrices by singular value decomposition (SVD). Consequently, a uniform subspace of which all sequences are mutual orthogonal can be constructed by serializing multi-subspaces, and the analyzed feature vectors can also be obtained by inner product transformation between analyzed sequence and all sequences derived from the multi-subspaces. The similarity is measured between the analyzed feature vector and the singular value vector of the referenced sequence. The simulation results show that the proposed method is improved in the dimension, accuracy and anti-noise ability with little sensitivity sacrifice. More... »

PAGES

250-256

References to SciGraph publications

  • 1993. Efficient similarity search in sequence databases in FOUNDATIONS OF DATA ORGANIZATION AND ALGORITHMS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12555-010-0210-z

    DOI

    http://dx.doi.org/10.1007/s12555-010-0210-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1014912849


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Central South University", 
              "id": "https://www.grid.ac/institutes/grid.216417.7", 
              "name": [
                "School of Physics Science and Technology, Central South University, Changsha City, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hu", 
            "givenName": "Zhi-kun", 
            "id": "sg:person.011402131561.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011402131561.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Central South University", 
              "id": "https://www.grid.ac/institutes/grid.216417.7", 
              "name": [
                "School of Information Science and Engineering, Central South University, Changsha City, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gui", 
            "givenName": "Wei-hua", 
            "id": "sg:person.014564074022.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014564074022.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Central South University", 
              "id": "https://www.grid.ac/institutes/grid.216417.7", 
              "name": [
                "School of Information Science and Engineering, Central South University, Changsha City, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yang", 
            "givenName": "Chun-hua", 
            "id": "sg:person.014077631760.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014077631760.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Central South University", 
              "id": "https://www.grid.ac/institutes/grid.216417.7", 
              "name": [
                "School of Physics Science and Technology, Central South University, Changsha City, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xu", 
            "givenName": "Fei", 
            "id": "sg:person.010654611547.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010654611547.16"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/3-540-57301-1_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051043966", 
              "https://doi.org/10.1007/3-540-57301-1_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/29.1585", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061144227"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/78.840002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061231194"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tkde.2003.1198399", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061661158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsm.2007.907607", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061791915"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cdc.2000.912365", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093710774"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cdc.2008.4738878", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094612662"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/375663.375680", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098953948"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-04", 
        "datePublishedReg": "2010-04-01", 
        "description": "A feature vectors extracting method for similarity measurement between a referenced sequence and an analyzed sequence is proposed. The referenced sequence and analyzed sequence are compressed into two wavelet matrices by Discrete Orthogonal Wavelet Transform (DOWT), respectively. A singular value vector and the multi-subspaces of the referenced matrix are derived from wavelet matrices by singular value decomposition (SVD). Consequently, a uniform subspace of which all sequences are mutual orthogonal can be constructed by serializing multi-subspaces, and the analyzed feature vectors can also be obtained by inner product transformation between analyzed sequence and all sequences derived from the multi-subspaces. The similarity is measured between the analyzed feature vector and the singular value vector of the referenced sequence. The simulation results show that the proposed method is improved in the dimension, accuracy and anti-noise ability with little sensitivity sacrifice.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s12555-010-0210-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1041911", 
            "issn": [
              "1598-6446", 
              "2005-4092"
            ], 
            "name": "International Journal of Control, Automation and Systems", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "8"
          }
        ], 
        "name": "Sequences feature vectors extracting method for similarity measurement based on wavelet and matrix transforming", 
        "pagination": "250-256", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "470d127d3368236cd54bb7752e4be8713cc300fd060003571a9d81bd62a1bcf0"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12555-010-0210-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1014912849"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12555-010-0210-z", 
          "https://app.dimensions.ai/details/publication/pub.1014912849"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:19", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54322_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs12555-010-0210-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12555-010-0210-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12555-010-0210-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12555-010-0210-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12555-010-0210-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    108 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12555-010-0210-z schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N44a942674fe24da1a36669a632afde94
    4 schema:citation sg:pub.10.1007/3-540-57301-1_5
    5 https://doi.org/10.1109/29.1585
    6 https://doi.org/10.1109/78.840002
    7 https://doi.org/10.1109/cdc.2000.912365
    8 https://doi.org/10.1109/cdc.2008.4738878
    9 https://doi.org/10.1109/tkde.2003.1198399
    10 https://doi.org/10.1109/tsm.2007.907607
    11 https://doi.org/10.1145/375663.375680
    12 schema:datePublished 2010-04
    13 schema:datePublishedReg 2010-04-01
    14 schema:description A feature vectors extracting method for similarity measurement between a referenced sequence and an analyzed sequence is proposed. The referenced sequence and analyzed sequence are compressed into two wavelet matrices by Discrete Orthogonal Wavelet Transform (DOWT), respectively. A singular value vector and the multi-subspaces of the referenced matrix are derived from wavelet matrices by singular value decomposition (SVD). Consequently, a uniform subspace of which all sequences are mutual orthogonal can be constructed by serializing multi-subspaces, and the analyzed feature vectors can also be obtained by inner product transformation between analyzed sequence and all sequences derived from the multi-subspaces. The similarity is measured between the analyzed feature vector and the singular value vector of the referenced sequence. The simulation results show that the proposed method is improved in the dimension, accuracy and anti-noise ability with little sensitivity sacrifice.
    15 schema:genre research_article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree false
    18 schema:isPartOf N7085911971b141cabb9df39ef7201eab
    19 Ne66395841aaa4495b0173ac63b67d73d
    20 sg:journal.1041911
    21 schema:name Sequences feature vectors extracting method for similarity measurement based on wavelet and matrix transforming
    22 schema:pagination 250-256
    23 schema:productId N560c97ccb679431db0be23fd698c0bd3
    24 N6b211cd9119847eab654e0ab29595442
    25 N9fbc8c2eddb94ffabe3a30a3517bc71b
    26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014912849
    27 https://doi.org/10.1007/s12555-010-0210-z
    28 schema:sdDatePublished 2019-04-11T10:19
    29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    30 schema:sdPublisher N2e4133880ea040d7b98475c3fad37ed0
    31 schema:url http://link.springer.com/10.1007%2Fs12555-010-0210-z
    32 sgo:license sg:explorer/license/
    33 sgo:sdDataset articles
    34 rdf:type schema:ScholarlyArticle
    35 N1f45910fcbc74f9e8f02efb4c2838b26 rdf:first sg:person.010654611547.16
    36 rdf:rest rdf:nil
    37 N2e4133880ea040d7b98475c3fad37ed0 schema:name Springer Nature - SN SciGraph project
    38 rdf:type schema:Organization
    39 N44a942674fe24da1a36669a632afde94 rdf:first sg:person.011402131561.33
    40 rdf:rest Nbc41d17150bc4841acb2b1aa12670943
    41 N560c97ccb679431db0be23fd698c0bd3 schema:name doi
    42 schema:value 10.1007/s12555-010-0210-z
    43 rdf:type schema:PropertyValue
    44 N6b211cd9119847eab654e0ab29595442 schema:name readcube_id
    45 schema:value 470d127d3368236cd54bb7752e4be8713cc300fd060003571a9d81bd62a1bcf0
    46 rdf:type schema:PropertyValue
    47 N7085911971b141cabb9df39ef7201eab schema:issueNumber 2
    48 rdf:type schema:PublicationIssue
    49 N9d1f899f66cb40659f77276f436776eb rdf:first sg:person.014077631760.17
    50 rdf:rest N1f45910fcbc74f9e8f02efb4c2838b26
    51 N9fbc8c2eddb94ffabe3a30a3517bc71b schema:name dimensions_id
    52 schema:value pub.1014912849
    53 rdf:type schema:PropertyValue
    54 Nbc41d17150bc4841acb2b1aa12670943 rdf:first sg:person.014564074022.19
    55 rdf:rest N9d1f899f66cb40659f77276f436776eb
    56 Ne66395841aaa4495b0173ac63b67d73d schema:volumeNumber 8
    57 rdf:type schema:PublicationVolume
    58 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    59 schema:name Information and Computing Sciences
    60 rdf:type schema:DefinedTerm
    61 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    62 schema:name Artificial Intelligence and Image Processing
    63 rdf:type schema:DefinedTerm
    64 sg:journal.1041911 schema:issn 1598-6446
    65 2005-4092
    66 schema:name International Journal of Control, Automation and Systems
    67 rdf:type schema:Periodical
    68 sg:person.010654611547.16 schema:affiliation https://www.grid.ac/institutes/grid.216417.7
    69 schema:familyName Xu
    70 schema:givenName Fei
    71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010654611547.16
    72 rdf:type schema:Person
    73 sg:person.011402131561.33 schema:affiliation https://www.grid.ac/institutes/grid.216417.7
    74 schema:familyName Hu
    75 schema:givenName Zhi-kun
    76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011402131561.33
    77 rdf:type schema:Person
    78 sg:person.014077631760.17 schema:affiliation https://www.grid.ac/institutes/grid.216417.7
    79 schema:familyName Yang
    80 schema:givenName Chun-hua
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014077631760.17
    82 rdf:type schema:Person
    83 sg:person.014564074022.19 schema:affiliation https://www.grid.ac/institutes/grid.216417.7
    84 schema:familyName Gui
    85 schema:givenName Wei-hua
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014564074022.19
    87 rdf:type schema:Person
    88 sg:pub.10.1007/3-540-57301-1_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051043966
    89 https://doi.org/10.1007/3-540-57301-1_5
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1109/29.1585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061144227
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1109/78.840002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061231194
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1109/cdc.2000.912365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093710774
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1109/cdc.2008.4738878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094612662
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1109/tkde.2003.1198399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061661158
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1109/tsm.2007.907607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061791915
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1145/375663.375680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098953948
    104 rdf:type schema:CreativeWork
    105 https://www.grid.ac/institutes/grid.216417.7 schema:alternateName Central South University
    106 schema:name School of Information Science and Engineering, Central South University, Changsha City, China
    107 School of Physics Science and Technology, Central South University, Changsha City, China
    108 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...