Big data challenges in genome informatics View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-02

AUTHORS

Ka-Chun Wong

ABSTRACT

In recent years, we have witnessed a big data explosion in genomics, thanks to the improvement in high-throughput technologies at drastically decreasing costs. We are entering the era of millions of available genomes. Notably, each genome can be composed of billions of nucleotides stored as plain text files in gigabytes (GBs). It is undeniable that those genome data impose unprecedented data challenges for us. In this article, we briefly discuss the big data challenges associated with genomics in recent years. More... »

PAGES

51-54

Journal

TITLE

Biophysical Reviews

ISSUE

1

VOLUME

11

Author Affiliations

From Grant

  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12551-018-0493-5

    DOI

    http://dx.doi.org/10.1007/s12551-018-0493-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111663687

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30684131


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "City University of Hong Kong", 
              "id": "https://www.grid.ac/institutes/grid.35030.35", 
              "name": [
                "City University of Hong Kong, Kowloon, Hong Kong"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wong", 
            "givenName": "Ka-Chun", 
            "id": "sg:person.013410402540.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013410402540.28"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1093/bioinformatics/btt086", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000520351"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btu604", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005203126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1181369", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007401642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1181369", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007401642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09534", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010608717", 
              "https://doi.org/10.1038/nature09534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09534", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010608717", 
              "https://doi.org/10.1038/nature09534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btt769", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018265400"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12644", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019700652", 
              "https://doi.org/10.1038/nature12644"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07730", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021031479", 
              "https://doi.org/10.1038/nature07730"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/hmg/ddq416", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021592496"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/hmg/ddq416", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021592496"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1004221", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025283575"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2011.11.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026652255"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3286", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026830910", 
              "https://doi.org/10.1038/ng.3286"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ymeth.2012.05.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027162735"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ymeth.2012.05.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027162735"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tig.2007.12.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027335183"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2008-9-9-r137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027608848", 
              "https://doi.org/10.1186/gb-2008-9-9-r137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bti652", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028027978"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bti652", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028027978"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bib/bbs015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028355276"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14248", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031836937", 
              "https://doi.org/10.1038/nature14248"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1105136", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031973383"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg3655", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034338542", 
              "https://doi.org/10.1038/nrg3655"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2047-217x-2-10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036067883", 
              "https://doi.org/10.1186/2047-217x-2-10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08497", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036599020", 
              "https://doi.org/10.1038/nature08497"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08497", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036599020", 
              "https://doi.org/10.1038/nature08497"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btr046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037439193"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btu170", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042720804"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkt574", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044526501"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045381177", 
              "https://doi.org/10.1038/nmeth.1226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gks501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046078270"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09796", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049651011", 
              "https://doi.org/10.1038/nature09796"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tcbb.2015.2424421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061541429"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02", 
        "datePublishedReg": "2019-02-01", 
        "description": "In recent years, we have witnessed a big data explosion in genomics, thanks to the improvement in high-throughput technologies at drastically decreasing costs. We are entering the era of millions of available genomes. Notably, each genome can be composed of billions of nucleotides stored as plain text files in gigabytes (GBs). It is undeniable that those genome data impose unprecedented data challenges for us. In this article, we briefly discuss the big data challenges associated with genomics in recent years.", 
        "genre": "non_research_article", 
        "id": "sg:pub.10.1007/s12551-018-0493-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7426806", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7431460", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7731961", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1041162", 
            "issn": [
              "1867-2450", 
              "1867-2469"
            ], 
            "name": "Biophysical Reviews", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "11"
          }
        ], 
        "name": "Big data challenges in genome informatics", 
        "pagination": "51-54", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "e1a620c8613ecdd7a7142f81716d4afbd5b0591d1748c983eb14ce4df6d1fed2"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30684131"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101498573"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12551-018-0493-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111663687"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12551-018-0493-5", 
          "https://app.dimensions.ai/details/publication/pub.1111663687"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T11:19", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000354_0000000354/records_11710_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs12551-018-0493-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12551-018-0493-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12551-018-0493-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12551-018-0493-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12551-018-0493-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    170 TRIPLES      21 PREDICATES      57 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12551-018-0493-5 schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author Na33725fbf62846e183a2ac4769eb030f
    4 schema:citation sg:pub.10.1038/nature07730
    5 sg:pub.10.1038/nature08497
    6 sg:pub.10.1038/nature09534
    7 sg:pub.10.1038/nature09796
    8 sg:pub.10.1038/nature12644
    9 sg:pub.10.1038/nature14248
    10 sg:pub.10.1038/ng.3286
    11 sg:pub.10.1038/nmeth.1226
    12 sg:pub.10.1038/nrg3655
    13 sg:pub.10.1186/2047-217x-2-10
    14 sg:pub.10.1186/gb-2008-9-9-r137
    15 https://doi.org/10.1016/j.cell.2011.11.013
    16 https://doi.org/10.1016/j.tig.2007.12.007
    17 https://doi.org/10.1016/j.ymeth.2012.05.001
    18 https://doi.org/10.1093/bib/bbs015
    19 https://doi.org/10.1093/bioinformatics/bti652
    20 https://doi.org/10.1093/bioinformatics/btr046
    21 https://doi.org/10.1093/bioinformatics/btt086
    22 https://doi.org/10.1093/bioinformatics/btt769
    23 https://doi.org/10.1093/bioinformatics/btu170
    24 https://doi.org/10.1093/bioinformatics/btu604
    25 https://doi.org/10.1093/hmg/ddq416
    26 https://doi.org/10.1093/nar/gks501
    27 https://doi.org/10.1093/nar/gkt574
    28 https://doi.org/10.1109/tcbb.2015.2424421
    29 https://doi.org/10.1126/science.1105136
    30 https://doi.org/10.1126/science.1181369
    31 https://doi.org/10.1371/journal.pcbi.1004221
    32 schema:datePublished 2019-02
    33 schema:datePublishedReg 2019-02-01
    34 schema:description In recent years, we have witnessed a big data explosion in genomics, thanks to the improvement in high-throughput technologies at drastically decreasing costs. We are entering the era of millions of available genomes. Notably, each genome can be composed of billions of nucleotides stored as plain text files in gigabytes (GBs). It is undeniable that those genome data impose unprecedented data challenges for us. In this article, we briefly discuss the big data challenges associated with genomics in recent years.
    35 schema:genre non_research_article
    36 schema:inLanguage en
    37 schema:isAccessibleForFree true
    38 schema:isPartOf N1a8c78df99c249bda1f071cd33d555d0
    39 N6eb1654ee3dd4142acee7fb890857a3e
    40 sg:journal.1041162
    41 schema:name Big data challenges in genome informatics
    42 schema:pagination 51-54
    43 schema:productId N57c7f9cb5b4c492785f4b2e7a2715561
    44 Nc63410e252e2427cb47c1c37da0d0012
    45 Ne183a0de551b409c99385b899d9b7ea8
    46 Neae8caea5e604b3bb989e7334d1fa17b
    47 Nedeb9cf082a745d7af6688f28ca543a5
    48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111663687
    49 https://doi.org/10.1007/s12551-018-0493-5
    50 schema:sdDatePublished 2019-04-11T11:19
    51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    52 schema:sdPublisher Ne212b5063b0647939406d62856549115
    53 schema:url https://link.springer.com/10.1007%2Fs12551-018-0493-5
    54 sgo:license sg:explorer/license/
    55 sgo:sdDataset articles
    56 rdf:type schema:ScholarlyArticle
    57 N1a8c78df99c249bda1f071cd33d555d0 schema:volumeNumber 11
    58 rdf:type schema:PublicationVolume
    59 N57c7f9cb5b4c492785f4b2e7a2715561 schema:name doi
    60 schema:value 10.1007/s12551-018-0493-5
    61 rdf:type schema:PropertyValue
    62 N6eb1654ee3dd4142acee7fb890857a3e schema:issueNumber 1
    63 rdf:type schema:PublicationIssue
    64 Na33725fbf62846e183a2ac4769eb030f rdf:first sg:person.013410402540.28
    65 rdf:rest rdf:nil
    66 Nc63410e252e2427cb47c1c37da0d0012 schema:name dimensions_id
    67 schema:value pub.1111663687
    68 rdf:type schema:PropertyValue
    69 Ne183a0de551b409c99385b899d9b7ea8 schema:name nlm_unique_id
    70 schema:value 101498573
    71 rdf:type schema:PropertyValue
    72 Ne212b5063b0647939406d62856549115 schema:name Springer Nature - SN SciGraph project
    73 rdf:type schema:Organization
    74 Neae8caea5e604b3bb989e7334d1fa17b schema:name readcube_id
    75 schema:value e1a620c8613ecdd7a7142f81716d4afbd5b0591d1748c983eb14ce4df6d1fed2
    76 rdf:type schema:PropertyValue
    77 Nedeb9cf082a745d7af6688f28ca543a5 schema:name pubmed_id
    78 schema:value 30684131
    79 rdf:type schema:PropertyValue
    80 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Biological Sciences
    82 rdf:type schema:DefinedTerm
    83 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Genetics
    85 rdf:type schema:DefinedTerm
    86 sg:grant.7426806 http://pending.schema.org/fundedItem sg:pub.10.1007/s12551-018-0493-5
    87 rdf:type schema:MonetaryGrant
    88 sg:grant.7431460 http://pending.schema.org/fundedItem sg:pub.10.1007/s12551-018-0493-5
    89 rdf:type schema:MonetaryGrant
    90 sg:grant.7731961 http://pending.schema.org/fundedItem sg:pub.10.1007/s12551-018-0493-5
    91 rdf:type schema:MonetaryGrant
    92 sg:journal.1041162 schema:issn 1867-2450
    93 1867-2469
    94 schema:name Biophysical Reviews
    95 rdf:type schema:Periodical
    96 sg:person.013410402540.28 schema:affiliation https://www.grid.ac/institutes/grid.35030.35
    97 schema:familyName Wong
    98 schema:givenName Ka-Chun
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013410402540.28
    100 rdf:type schema:Person
    101 sg:pub.10.1038/nature07730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021031479
    102 https://doi.org/10.1038/nature07730
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1038/nature08497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036599020
    105 https://doi.org/10.1038/nature08497
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1038/nature09534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010608717
    108 https://doi.org/10.1038/nature09534
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1038/nature09796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049651011
    111 https://doi.org/10.1038/nature09796
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1038/nature12644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019700652
    114 https://doi.org/10.1038/nature12644
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1038/nature14248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031836937
    117 https://doi.org/10.1038/nature14248
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1038/ng.3286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026830910
    120 https://doi.org/10.1038/ng.3286
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1038/nmeth.1226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045381177
    123 https://doi.org/10.1038/nmeth.1226
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1038/nrg3655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034338542
    126 https://doi.org/10.1038/nrg3655
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1186/2047-217x-2-10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036067883
    129 https://doi.org/10.1186/2047-217x-2-10
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1186/gb-2008-9-9-r137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027608848
    132 https://doi.org/10.1186/gb-2008-9-9-r137
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/j.cell.2011.11.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026652255
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1016/j.tig.2007.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027335183
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1016/j.ymeth.2012.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027162735
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1093/bib/bbs015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028355276
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1093/bioinformatics/bti652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028027978
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1093/bioinformatics/btr046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037439193
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1093/bioinformatics/btt086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000520351
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1093/bioinformatics/btt769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018265400
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1093/bioinformatics/btu170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042720804
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1093/bioinformatics/btu604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005203126
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1093/hmg/ddq416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021592496
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1093/nar/gks501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046078270
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1093/nar/gkt574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044526501
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1109/tcbb.2015.2424421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061541429
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1126/science.1105136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031973383
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1126/science.1181369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007401642
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1371/journal.pcbi.1004221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025283575
    167 rdf:type schema:CreativeWork
    168 https://www.grid.ac/institutes/grid.35030.35 schema:alternateName City University of Hong Kong
    169 schema:name City University of Hong Kong, Kowloon, Hong Kong
    170 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...