Tool-wear monitoring during micro-end milling using wavelet packet transform and Fisher’s linear discriminant View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-07

AUTHORS

Young-Sun Hong, Hae-Sung Yoon, Jong-Seol Moon, Young-Man Cho, Sung-Hoon Ahn

ABSTRACT

Tool wear is one of the most important parameters in micro-end milling, and can be used to monitor the condition of the machine and the tool. A micro-end mill has different characteristics from a macro-scale end mill; in particular, shank run-out (which is negligible in the macro-scale tool due to the low aspect ratio) is significant in micro-end milling, inducing excessive tool wear and reduced tool life and leading to sudden, premature failure. In this paper, a novel tool-wear monitoring method is described for determining the state of a micro-end mill using wavelet packet transforms and Fisher’s linear discriminant. Force and torque signals were measured using a dynamometer and were used to reflect geometric changes in the micro-end mill due to wear. Because of the small signal-to-noise ratio, sensor signals measured during the milling process were periodically averaged, and the resulting single-period signals provided improved efficiency of feature extraction using wavelet packet transforms. The extracted features were classified in the wavelet domain and used to determine the tool state employing a hidden Markov model. The recognition results were compared with those of an energy-based monitoring technique, and we found that our method could determine the tool state more accurately for both normal wear and premature failure of micro-end mills. More... »

PAGES

845-855

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12541-016-0103-z

DOI

http://dx.doi.org/10.1007/s12541-016-0103-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000699121


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0913", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mechanical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Mechanical and Aerospace Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hong", 
        "givenName": "Young-Sun", 
        "id": "sg:person.013322532002.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013322532002.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, South Korea", 
            "BK21 Plus Transformative Training Program for Creative Mechanical and Aerospace Engineers, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoon", 
        "givenName": "Hae-Sung", 
        "id": "sg:person.014052743361.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014052743361.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Mechanical and Aerospace Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moon", 
        "givenName": "Jong-Seol", 
        "id": "sg:person.016207003065.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016207003065.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cho", 
        "givenName": "Young-Man", 
        "id": "sg:person.012176153337.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012176153337.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Mechanical and Aerospace Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, South Korea", 
            "Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ahn", 
        "givenName": "Sung-Hoon", 
        "id": "sg:person.01004521447.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004521447.50"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2011.05.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000422844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2006.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006947323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40684-014-0033-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012500994", 
          "https://doi.org/10.1007/s40684-014-0033-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0141-6359(01)00067-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014321143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2008.01.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015886880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2011.01.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020580879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymssp.2008.04.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021244870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jclepro.2014.03.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026234990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2009.03.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030291141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0890-6955(00)00112-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030899268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jclepro.2013.04.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033730702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2015.03.100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034924999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12541-013-0223-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035029043", 
          "https://doi.org/10.1007/s12541-013-0223-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2009.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041233701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12541-011-0116-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043931329", 
          "https://doi.org/10.1007/s12541-011-0116-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jclepro.2014.04.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045196024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.18626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061178979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/massp.1986.1165342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061385404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1475320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062070594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1116/1.3058729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062173756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1116/1.3058729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062173756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0954405413491242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063882733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0954405413491242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063882733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/2041300910393428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064084077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/2041300910393428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064084077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1243/09544054jem2057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064448768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1243/09544054jem2057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064448768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/b19559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095905133"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-07", 
    "datePublishedReg": "2016-07-01", 
    "description": "Tool wear is one of the most important parameters in micro-end milling, and can be used to monitor the condition of the machine and the tool. A micro-end mill has different characteristics from a macro-scale end mill; in particular, shank run-out (which is negligible in the macro-scale tool due to the low aspect ratio) is significant in micro-end milling, inducing excessive tool wear and reduced tool life and leading to sudden, premature failure. In this paper, a novel tool-wear monitoring method is described for determining the state of a micro-end mill using wavelet packet transforms and Fisher\u2019s linear discriminant. Force and torque signals were measured using a dynamometer and were used to reflect geometric changes in the micro-end mill due to wear. Because of the small signal-to-noise ratio, sensor signals measured during the milling process were periodically averaged, and the resulting single-period signals provided improved efficiency of feature extraction using wavelet packet transforms. The extracted features were classified in the wavelet domain and used to determine the tool state employing a hidden Markov model. The recognition results were compared with those of an energy-based monitoring technique, and we found that our method could determine the tool state more accurately for both normal wear and premature failure of micro-end mills.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12541-016-0103-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135952", 
        "issn": [
          "2234-7593", 
          "2005-4602"
        ], 
        "name": "International Journal of Precision Engineering and Manufacturing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "Tool-wear monitoring during micro-end milling using wavelet packet transform and Fisher\u2019s linear discriminant", 
    "pagination": "845-855", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0354470d1bdba033109cb12c63f590898ce0151b70de6173915cb8dfdb8c62de"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12541-016-0103-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000699121"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12541-016-0103-z", 
      "https://app.dimensions.ai/details/publication/pub.1000699121"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87097_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12541-016-0103-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12541-016-0103-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12541-016-0103-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12541-016-0103-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12541-016-0103-z'


 

This table displays all metadata directly associated to this object as RDF triples.

166 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12541-016-0103-z schema:about anzsrc-for:09
2 anzsrc-for:0913
3 schema:author Nd2dc19b9f31944f9b35523f8f578a271
4 schema:citation sg:pub.10.1007/s12541-011-0116-6
5 sg:pub.10.1007/s12541-013-0223-7
6 sg:pub.10.1007/s40684-014-0033-0
7 https://doi.org/10.1016/j.ijmachtools.2006.01.001
8 https://doi.org/10.1016/j.ijmachtools.2008.01.011
9 https://doi.org/10.1016/j.ijmachtools.2009.02.003
10 https://doi.org/10.1016/j.ijmachtools.2011.01.003
11 https://doi.org/10.1016/j.ijmachtools.2011.05.006
12 https://doi.org/10.1016/j.jclepro.2013.04.028
13 https://doi.org/10.1016/j.jclepro.2014.03.061
14 https://doi.org/10.1016/j.jclepro.2014.04.055
15 https://doi.org/10.1016/j.patcog.2009.03.023
16 https://doi.org/10.1016/j.rser.2015.03.100
17 https://doi.org/10.1016/j.ymssp.2008.04.010
18 https://doi.org/10.1016/s0141-6359(01)00067-8
19 https://doi.org/10.1016/s0890-6955(00)00112-7
20 https://doi.org/10.1109/5.18626
21 https://doi.org/10.1109/massp.1986.1165342
22 https://doi.org/10.1115/1.1475320
23 https://doi.org/10.1116/1.3058729
24 https://doi.org/10.1177/0954405413491242
25 https://doi.org/10.1177/2041300910393428
26 https://doi.org/10.1201/b19559
27 https://doi.org/10.1243/09544054jem2057
28 schema:datePublished 2016-07
29 schema:datePublishedReg 2016-07-01
30 schema:description Tool wear is one of the most important parameters in micro-end milling, and can be used to monitor the condition of the machine and the tool. A micro-end mill has different characteristics from a macro-scale end mill; in particular, shank run-out (which is negligible in the macro-scale tool due to the low aspect ratio) is significant in micro-end milling, inducing excessive tool wear and reduced tool life and leading to sudden, premature failure. In this paper, a novel tool-wear monitoring method is described for determining the state of a micro-end mill using wavelet packet transforms and Fisher’s linear discriminant. Force and torque signals were measured using a dynamometer and were used to reflect geometric changes in the micro-end mill due to wear. Because of the small signal-to-noise ratio, sensor signals measured during the milling process were periodically averaged, and the resulting single-period signals provided improved efficiency of feature extraction using wavelet packet transforms. The extracted features were classified in the wavelet domain and used to determine the tool state employing a hidden Markov model. The recognition results were compared with those of an energy-based monitoring technique, and we found that our method could determine the tool state more accurately for both normal wear and premature failure of micro-end mills.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf N29c6294c24504fe39d407ac00bc2aa46
35 N4316b2fcb37d45d3a092900279ff0bcb
36 sg:journal.1135952
37 schema:name Tool-wear monitoring during micro-end milling using wavelet packet transform and Fisher’s linear discriminant
38 schema:pagination 845-855
39 schema:productId N2e68998310964f30a8286f13cfcca706
40 N3590a254b90f45c99e78ad2d5e8a1353
41 N3aeec36c272142228542251568690e82
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000699121
43 https://doi.org/10.1007/s12541-016-0103-z
44 schema:sdDatePublished 2019-04-11T12:24
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N7113734d51f04d209b535c0495ea53d6
47 schema:url https://link.springer.com/10.1007%2Fs12541-016-0103-z
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N29c6294c24504fe39d407ac00bc2aa46 schema:issueNumber 7
52 rdf:type schema:PublicationIssue
53 N2e68998310964f30a8286f13cfcca706 schema:name dimensions_id
54 schema:value pub.1000699121
55 rdf:type schema:PropertyValue
56 N3590a254b90f45c99e78ad2d5e8a1353 schema:name doi
57 schema:value 10.1007/s12541-016-0103-z
58 rdf:type schema:PropertyValue
59 N3aeec36c272142228542251568690e82 schema:name readcube_id
60 schema:value 0354470d1bdba033109cb12c63f590898ce0151b70de6173915cb8dfdb8c62de
61 rdf:type schema:PropertyValue
62 N41ff99fb67954e369f58fc8bf3edb078 rdf:first sg:person.012176153337.61
63 rdf:rest N869d69959e3c47f0875e49698fb28d08
64 N4316b2fcb37d45d3a092900279ff0bcb schema:volumeNumber 17
65 rdf:type schema:PublicationVolume
66 N7113734d51f04d209b535c0495ea53d6 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N869d69959e3c47f0875e49698fb28d08 rdf:first sg:person.01004521447.50
69 rdf:rest rdf:nil
70 Nb3a41f65ce8648ec938e9def2abb5147 rdf:first sg:person.014052743361.56
71 rdf:rest Nca45e9172d91474ea165d583632317cf
72 Nca45e9172d91474ea165d583632317cf rdf:first sg:person.016207003065.64
73 rdf:rest N41ff99fb67954e369f58fc8bf3edb078
74 Nd2dc19b9f31944f9b35523f8f578a271 rdf:first sg:person.013322532002.47
75 rdf:rest Nb3a41f65ce8648ec938e9def2abb5147
76 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
77 schema:name Engineering
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0913 schema:inDefinedTermSet anzsrc-for:
80 schema:name Mechanical Engineering
81 rdf:type schema:DefinedTerm
82 sg:journal.1135952 schema:issn 2005-4602
83 2234-7593
84 schema:name International Journal of Precision Engineering and Manufacturing
85 rdf:type schema:Periodical
86 sg:person.01004521447.50 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
87 schema:familyName Ahn
88 schema:givenName Sung-Hoon
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004521447.50
90 rdf:type schema:Person
91 sg:person.012176153337.61 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
92 schema:familyName Cho
93 schema:givenName Young-Man
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012176153337.61
95 rdf:type schema:Person
96 sg:person.013322532002.47 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
97 schema:familyName Hong
98 schema:givenName Young-Sun
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013322532002.47
100 rdf:type schema:Person
101 sg:person.014052743361.56 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
102 schema:familyName Yoon
103 schema:givenName Hae-Sung
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014052743361.56
105 rdf:type schema:Person
106 sg:person.016207003065.64 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
107 schema:familyName Moon
108 schema:givenName Jong-Seol
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016207003065.64
110 rdf:type schema:Person
111 sg:pub.10.1007/s12541-011-0116-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043931329
112 https://doi.org/10.1007/s12541-011-0116-6
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s12541-013-0223-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035029043
115 https://doi.org/10.1007/s12541-013-0223-7
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s40684-014-0033-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012500994
118 https://doi.org/10.1007/s40684-014-0033-0
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.ijmachtools.2006.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006947323
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.ijmachtools.2008.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015886880
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.ijmachtools.2009.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041233701
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.ijmachtools.2011.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020580879
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.ijmachtools.2011.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000422844
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.jclepro.2013.04.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033730702
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.jclepro.2014.03.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026234990
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.jclepro.2014.04.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045196024
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.patcog.2009.03.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030291141
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.rser.2015.03.100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034924999
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.ymssp.2008.04.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021244870
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/s0141-6359(01)00067-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014321143
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/s0890-6955(00)00112-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030899268
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/5.18626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061178979
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/massp.1986.1165342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061385404
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1115/1.1475320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062070594
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1116/1.3058729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062173756
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1177/0954405413491242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063882733
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1177/2041300910393428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064084077
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1201/b19559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095905133
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1243/09544054jem2057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064448768
161 rdf:type schema:CreativeWork
162 https://www.grid.ac/institutes/grid.31501.36 schema:alternateName Seoul National University
163 schema:name BK21 Plus Transformative Training Program for Creative Mechanical and Aerospace Engineers, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, South Korea
164 Department of Mechanical and Aerospace Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, South Korea
165 Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, South Korea
166 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...