An incipient on-line anomaly detection approach for the dynamic rolling process View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-09-07

AUTHORS

Yanjing Ou, Jinwen Hu, Xiang Li, Salah Haridy

ABSTRACT

Over the past decades, various methods have been developed to analysis and monitor the dynamic metal processes, specially the extensively used cold rolling process. However, some limitation still exists for the traditional data analysis tools to be implemented well for these processes. For example, the performance of many of the traditional data analysis approaches cannot be guaranteed when the distribution assumption is violated. Meanwhile, it is still lack of systematic method to make good use of the huge condition parameters. In this article we develop a viable on-line anomaly incipient detection technique towards the cold rolling process of steel sheets. Based on the condition-based SPC, the proposed approach can monitor the multi condition parameters as well as the corresponding output characteristic in a real-time manner simultaneously and efficiently. It provides a framework for statistical process monitoring development under such dynamic manufacturing environment in order to improve the detecting Sensitivity and Specificity. The real data practical application verifies that this proposed approach can have an excellent performance without the normal distribution assumption, thus it has great potential to be employed in a large application area. More... »

PAGES

1855-1864

References to SciGraph publications

  • 2012-09-30. Optimal design to reduce the maximum load in ring rolling process in INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING
  • 2013-10-05. A study to predict the creation of surface defects on material and suppress them in caliber rolling process in INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING
  • 2013-04-05. An artificial neural network system for predicting the deformation of steel plate in triangle induction heating process in INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING
  • 2012-10-31. Effects of skin pass rolling parameters on mechanical properties of steels in INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING
  • 2013-07-11. Monotonic change point estimation in the mean vector of a multivariate normal process in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2013-03-05. Ground reaction forces predicted by using artificial neural network during asymmetric movements in INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING
  • 2013-12-04. Rolling bearing-suspended spindle run-out control using repetitive control and adaptive feedforward cancellation in INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING
  • 2013-03-05. Dynamic modeling and numerical analysis of a cold rolling mill in INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING
  • 2013-12-04. A development of a web-based and user-centered process analysis system for quality improvement in INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING
  • 2012-03. Research on on-line automatic diagnostic technology for scratch defect of rolling element bearings in INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING
  • 2012-09-08. Application of a fuzzy controller for the lateral control in roll-to-roll printed electronics in INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING
  • 2010-04-29. An improved SPRT control chart for monitoring process mean in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2013-12-04. Study of edge-cracking characteristics during thin-foil rolling of Cu-Fe-P strip in INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING
  • 2011-06-01. Unified gauge-tension control in cold rolling mills: A robust regulation technique in INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING
  • 2013-03-05. A novel neural second-order sliding mode observer for robust fault diagnosis in robot manipulators in INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING
  • 2013-12-04. Optimization of roll forming process with evolutionary algorithm for green product in INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING
  • 2012-12-29. Design of roll profile in shape rolling of an irregular angle bar by the modified butterfly method in INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING
  • 2013-10-05. Study on high-speed cutting characteristics using design of experiments in INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING
  • 2013-12-04. Reliability estimation of pneumatic cylinders using performance degradation data in INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING
  • 2013-12-04. Bent tube design used in a high temperature heat exchanger using a FE analysis and RSM in INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING
  • 2013-10-05. Modeling and multi-constrained optimization in drilling process of carbon fiber reinforced epoxy composite in INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING
  • 2013-11-12. Reducing production loss by prolonging service life of rolling mill shear pin with ultrasonic nanocrystal surface modification technology in INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING
  • 2013-10-05. Analysis of squareness measurement using a laser interferometer system in INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12541-014-0539-y

    DOI

    http://dx.doi.org/10.1007/s12541-014-0539-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1014974019


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0910", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Manufacturing Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0913", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mechanical Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Singapore Institute of Manufacturing Technology (SIMTech), 71 Nanyang Drive, 638075, Singapore, Singapore", 
              "id": "http://www.grid.ac/institutes/grid.452278.e", 
              "name": [
                "Singapore Institute of Manufacturing Technology (SIMTech), 71 Nanyang Drive, 638075, Singapore, Singapore"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ou", 
            "givenName": "Yanjing", 
            "id": "sg:person.013732473425.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013732473425.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Singapore Institute of Manufacturing Technology (SIMTech), 71 Nanyang Drive, 638075, Singapore, Singapore", 
              "id": "http://www.grid.ac/institutes/grid.452278.e", 
              "name": [
                "Singapore Institute of Manufacturing Technology (SIMTech), 71 Nanyang Drive, 638075, Singapore, Singapore"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hu", 
            "givenName": "Jinwen", 
            "id": "sg:person.015260777133.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015260777133.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Singapore Institute of Manufacturing Technology (SIMTech), 71 Nanyang Drive, 638075, Singapore, Singapore", 
              "id": "http://www.grid.ac/institutes/grid.452278.e", 
              "name": [
                "Singapore Institute of Manufacturing Technology (SIMTech), 71 Nanyang Drive, 638075, Singapore, Singapore"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Xiang", 
            "id": "sg:person.016312744041.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016312744041.85"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mechanical and Industrial Engineering, Northeastern University, 360 Huntington Avenue, 02115, Boston, United States", 
              "id": "http://www.grid.ac/institutes/grid.261112.7", 
              "name": [
                "Department of Mechanical and Industrial Engineering, Northeastern University, 360 Huntington Avenue, 02115, Boston, United States"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Haridy", 
            "givenName": "Salah", 
            "id": "sg:person.011724742337.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011724742337.32"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00170-013-5150-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037476142", 
              "https://doi.org/10.1007/s00170-013-5150-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12541-012-0239-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038608540", 
              "https://doi.org/10.1007/s12541-012-0239-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-010-2675-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002166077", 
              "https://doi.org/10.1007/s00170-010-2675-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12541-013-0064-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030635979", 
              "https://doi.org/10.1007/s12541-013-0064-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12541-013-0245-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034282028", 
              "https://doi.org/10.1007/s12541-013-0245-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12541-013-0282-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025553297", 
              "https://doi.org/10.1007/s12541-013-0282-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12541-013-0288-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046828477", 
              "https://doi.org/10.1007/s12541-013-0288-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12541-013-0287-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017322620", 
              "https://doi.org/10.1007/s12541-013-0287-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12541-013-0276-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039396578", 
              "https://doi.org/10.1007/s12541-013-0276-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12541-013-0251-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046025701", 
              "https://doi.org/10.1007/s12541-013-0251-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12541-013-0246-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037672461", 
              "https://doi.org/10.1007/s12541-013-0246-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12541-012-0266-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021965579", 
              "https://doi.org/10.1007/s12541-012-0266-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12541-013-0293-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023744194", 
              "https://doi.org/10.1007/s12541-013-0293-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12541-013-0286-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032439809", 
              "https://doi.org/10.1007/s12541-013-0286-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12541-011-0051-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040146172", 
              "https://doi.org/10.1007/s12541-011-0051-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12541-013-0294-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047598468", 
              "https://doi.org/10.1007/s12541-013-0294-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12541-012-0045-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042096796", 
              "https://doi.org/10.1007/s12541-012-0045-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12541-013-0232-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002381191", 
              "https://doi.org/10.1007/s12541-013-0232-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12541-013-0056-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014065352", 
              "https://doi.org/10.1007/s12541-013-0056-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12541-013-0014-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029378967", 
              "https://doi.org/10.1007/s12541-013-0014-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12541-013-0075-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006036373", 
              "https://doi.org/10.1007/s12541-013-0075-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12541-012-0201-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041109375", 
              "https://doi.org/10.1007/s12541-012-0201-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12541-013-0055-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035509286", 
              "https://doi.org/10.1007/s12541-013-0055-5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-09-07", 
        "datePublishedReg": "2014-09-07", 
        "description": "Over the past decades, various methods have been developed to analysis and monitor the dynamic metal processes, specially the extensively used cold rolling process. However, some limitation still exists for the traditional data analysis tools to be implemented well for these processes. For example, the performance of many of the traditional data analysis approaches cannot be guaranteed when the distribution assumption is violated. Meanwhile, it is still lack of systematic method to make good use of the huge condition parameters. In this article we develop a viable on-line anomaly incipient detection technique towards the cold rolling process of steel sheets. Based on the condition-based SPC, the proposed approach can monitor the multi condition parameters as well as the corresponding output characteristic in a real-time manner simultaneously and efficiently. It provides a framework for statistical process monitoring development under such dynamic manufacturing environment in order to improve the detecting Sensitivity and Specificity. The real data practical application verifies that this proposed approach can have an excellent performance without the normal distribution assumption, thus it has great potential to be employed in a large application area.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s12541-014-0539-y", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1135952", 
            "issn": [
              "1229-8557", 
              "2005-4602"
            ], 
            "name": "International Journal of Precision Engineering and Manufacturing", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "15"
          }
        ], 
        "keywords": [
          "cold rolling process", 
          "rolling process", 
          "dynamic rolling process", 
          "condition parameters", 
          "steel sheets", 
          "dynamic manufacturing environment", 
          "metal process", 
          "output characteristics", 
          "manufacturing environment", 
          "large application area", 
          "excellent performance", 
          "traditional data analysis tools", 
          "real-time manner", 
          "great potential", 
          "traditional data analysis approaches", 
          "application areas", 
          "anomaly detection approach", 
          "data analysis tools", 
          "performance", 
          "distribution assumption", 
          "process", 
          "detection approach", 
          "analysis tools", 
          "detection techniques", 
          "parameters", 
          "sheets", 
          "statistical process", 
          "systematic method", 
          "analysis approach", 
          "method", 
          "data analysis approach", 
          "verifies", 
          "better use", 
          "approach", 
          "characteristics", 
          "technique", 
          "order", 
          "assumption", 
          "SPC", 
          "normal distribution assumption", 
          "incipient", 
          "environment", 
          "framework", 
          "potential", 
          "limitations", 
          "area", 
          "example", 
          "tool", 
          "past decade", 
          "use", 
          "analysis", 
          "sensitivity", 
          "development", 
          "decades", 
          "manner", 
          "article", 
          "lack", 
          "specificity", 
          "dynamic metal processes", 
          "huge condition parameters", 
          "line anomaly incipient detection technique", 
          "anomaly incipient detection technique", 
          "incipient detection technique", 
          "condition-based SPC", 
          "multi condition parameters", 
          "corresponding output characteristic", 
          "such dynamic manufacturing environment", 
          "real data practical application verifies", 
          "data practical application verifies", 
          "practical application verifies", 
          "application verifies", 
          "line anomaly detection approach"
        ], 
        "name": "An incipient on-line anomaly detection approach for the dynamic rolling process", 
        "pagination": "1855-1864", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1014974019"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12541-014-0539-y"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12541-014-0539-y", 
          "https://app.dimensions.ai/details/publication/pub.1014974019"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_636.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s12541-014-0539-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12541-014-0539-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12541-014-0539-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12541-014-0539-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12541-014-0539-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    250 TRIPLES      22 PREDICATES      120 URIs      88 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12541-014-0539-y schema:about anzsrc-for:09
    2 anzsrc-for:0910
    3 anzsrc-for:0913
    4 schema:author N467587bdc5af4559a3666eedb8429ad8
    5 schema:citation sg:pub.10.1007/s00170-010-2675-6
    6 sg:pub.10.1007/s00170-013-5150-3
    7 sg:pub.10.1007/s12541-011-0051-6
    8 sg:pub.10.1007/s12541-012-0045-z
    9 sg:pub.10.1007/s12541-012-0201-5
    10 sg:pub.10.1007/s12541-012-0239-4
    11 sg:pub.10.1007/s12541-012-0266-1
    12 sg:pub.10.1007/s12541-013-0014-1
    13 sg:pub.10.1007/s12541-013-0055-5
    14 sg:pub.10.1007/s12541-013-0056-4
    15 sg:pub.10.1007/s12541-013-0064-4
    16 sg:pub.10.1007/s12541-013-0075-1
    17 sg:pub.10.1007/s12541-013-0232-6
    18 sg:pub.10.1007/s12541-013-0245-1
    19 sg:pub.10.1007/s12541-013-0246-0
    20 sg:pub.10.1007/s12541-013-0251-3
    21 sg:pub.10.1007/s12541-013-0276-7
    22 sg:pub.10.1007/s12541-013-0282-9
    23 sg:pub.10.1007/s12541-013-0286-5
    24 sg:pub.10.1007/s12541-013-0287-4
    25 sg:pub.10.1007/s12541-013-0288-3
    26 sg:pub.10.1007/s12541-013-0293-6
    27 sg:pub.10.1007/s12541-013-0294-5
    28 schema:datePublished 2014-09-07
    29 schema:datePublishedReg 2014-09-07
    30 schema:description Over the past decades, various methods have been developed to analysis and monitor the dynamic metal processes, specially the extensively used cold rolling process. However, some limitation still exists for the traditional data analysis tools to be implemented well for these processes. For example, the performance of many of the traditional data analysis approaches cannot be guaranteed when the distribution assumption is violated. Meanwhile, it is still lack of systematic method to make good use of the huge condition parameters. In this article we develop a viable on-line anomaly incipient detection technique towards the cold rolling process of steel sheets. Based on the condition-based SPC, the proposed approach can monitor the multi condition parameters as well as the corresponding output characteristic in a real-time manner simultaneously and efficiently. It provides a framework for statistical process monitoring development under such dynamic manufacturing environment in order to improve the detecting Sensitivity and Specificity. The real data practical application verifies that this proposed approach can have an excellent performance without the normal distribution assumption, thus it has great potential to be employed in a large application area.
    31 schema:genre article
    32 schema:inLanguage en
    33 schema:isAccessibleForFree false
    34 schema:isPartOf N04f0b49b45524bf6a960b7cd7d49d24f
    35 Na8f6366aeba8443487f57ead90cf399a
    36 sg:journal.1135952
    37 schema:keywords SPC
    38 analysis
    39 analysis approach
    40 analysis tools
    41 anomaly detection approach
    42 anomaly incipient detection technique
    43 application areas
    44 application verifies
    45 approach
    46 area
    47 article
    48 assumption
    49 better use
    50 characteristics
    51 cold rolling process
    52 condition parameters
    53 condition-based SPC
    54 corresponding output characteristic
    55 data analysis approach
    56 data analysis tools
    57 data practical application verifies
    58 decades
    59 detection approach
    60 detection techniques
    61 development
    62 distribution assumption
    63 dynamic manufacturing environment
    64 dynamic metal processes
    65 dynamic rolling process
    66 environment
    67 example
    68 excellent performance
    69 framework
    70 great potential
    71 huge condition parameters
    72 incipient
    73 incipient detection technique
    74 lack
    75 large application area
    76 limitations
    77 line anomaly detection approach
    78 line anomaly incipient detection technique
    79 manner
    80 manufacturing environment
    81 metal process
    82 method
    83 multi condition parameters
    84 normal distribution assumption
    85 order
    86 output characteristics
    87 parameters
    88 past decade
    89 performance
    90 potential
    91 practical application verifies
    92 process
    93 real data practical application verifies
    94 real-time manner
    95 rolling process
    96 sensitivity
    97 sheets
    98 specificity
    99 statistical process
    100 steel sheets
    101 such dynamic manufacturing environment
    102 systematic method
    103 technique
    104 tool
    105 traditional data analysis approaches
    106 traditional data analysis tools
    107 use
    108 verifies
    109 schema:name An incipient on-line anomaly detection approach for the dynamic rolling process
    110 schema:pagination 1855-1864
    111 schema:productId N2176d2aec2514842b7d202d667e64b17
    112 N6b0e18d57d7d4f88af93094e366c9e27
    113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014974019
    114 https://doi.org/10.1007/s12541-014-0539-y
    115 schema:sdDatePublished 2022-01-01T18:34
    116 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    117 schema:sdPublisher Nc48b976e57004ecba6c4305169ad7f9c
    118 schema:url https://doi.org/10.1007/s12541-014-0539-y
    119 sgo:license sg:explorer/license/
    120 sgo:sdDataset articles
    121 rdf:type schema:ScholarlyArticle
    122 N04f0b49b45524bf6a960b7cd7d49d24f schema:volumeNumber 15
    123 rdf:type schema:PublicationVolume
    124 N04f23c79eb4544db86fc98c22f4259c2 rdf:first sg:person.015260777133.81
    125 rdf:rest N8ef9415c49e5464b8fc6f149499130ed
    126 N1ed28cc677754269b994d1ebead4535e rdf:first sg:person.011724742337.32
    127 rdf:rest rdf:nil
    128 N2176d2aec2514842b7d202d667e64b17 schema:name dimensions_id
    129 schema:value pub.1014974019
    130 rdf:type schema:PropertyValue
    131 N467587bdc5af4559a3666eedb8429ad8 rdf:first sg:person.013732473425.48
    132 rdf:rest N04f23c79eb4544db86fc98c22f4259c2
    133 N6b0e18d57d7d4f88af93094e366c9e27 schema:name doi
    134 schema:value 10.1007/s12541-014-0539-y
    135 rdf:type schema:PropertyValue
    136 N8ef9415c49e5464b8fc6f149499130ed rdf:first sg:person.016312744041.85
    137 rdf:rest N1ed28cc677754269b994d1ebead4535e
    138 Na8f6366aeba8443487f57ead90cf399a schema:issueNumber 9
    139 rdf:type schema:PublicationIssue
    140 Nc48b976e57004ecba6c4305169ad7f9c schema:name Springer Nature - SN SciGraph project
    141 rdf:type schema:Organization
    142 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    143 schema:name Engineering
    144 rdf:type schema:DefinedTerm
    145 anzsrc-for:0910 schema:inDefinedTermSet anzsrc-for:
    146 schema:name Manufacturing Engineering
    147 rdf:type schema:DefinedTerm
    148 anzsrc-for:0913 schema:inDefinedTermSet anzsrc-for:
    149 schema:name Mechanical Engineering
    150 rdf:type schema:DefinedTerm
    151 sg:journal.1135952 schema:issn 1229-8557
    152 2005-4602
    153 schema:name International Journal of Precision Engineering and Manufacturing
    154 schema:publisher Springer Nature
    155 rdf:type schema:Periodical
    156 sg:person.011724742337.32 schema:affiliation grid-institutes:grid.261112.7
    157 schema:familyName Haridy
    158 schema:givenName Salah
    159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011724742337.32
    160 rdf:type schema:Person
    161 sg:person.013732473425.48 schema:affiliation grid-institutes:grid.452278.e
    162 schema:familyName Ou
    163 schema:givenName Yanjing
    164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013732473425.48
    165 rdf:type schema:Person
    166 sg:person.015260777133.81 schema:affiliation grid-institutes:grid.452278.e
    167 schema:familyName Hu
    168 schema:givenName Jinwen
    169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015260777133.81
    170 rdf:type schema:Person
    171 sg:person.016312744041.85 schema:affiliation grid-institutes:grid.452278.e
    172 schema:familyName Li
    173 schema:givenName Xiang
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016312744041.85
    175 rdf:type schema:Person
    176 sg:pub.10.1007/s00170-010-2675-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002166077
    177 https://doi.org/10.1007/s00170-010-2675-6
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1007/s00170-013-5150-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037476142
    180 https://doi.org/10.1007/s00170-013-5150-3
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/s12541-011-0051-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040146172
    183 https://doi.org/10.1007/s12541-011-0051-6
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1007/s12541-012-0045-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1042096796
    186 https://doi.org/10.1007/s12541-012-0045-z
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1007/s12541-012-0201-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041109375
    189 https://doi.org/10.1007/s12541-012-0201-5
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/s12541-012-0239-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038608540
    192 https://doi.org/10.1007/s12541-012-0239-4
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1007/s12541-012-0266-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021965579
    195 https://doi.org/10.1007/s12541-012-0266-1
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/s12541-013-0014-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029378967
    198 https://doi.org/10.1007/s12541-013-0014-1
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/s12541-013-0055-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035509286
    201 https://doi.org/10.1007/s12541-013-0055-5
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1007/s12541-013-0056-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014065352
    204 https://doi.org/10.1007/s12541-013-0056-4
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1007/s12541-013-0064-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030635979
    207 https://doi.org/10.1007/s12541-013-0064-4
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1007/s12541-013-0075-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006036373
    210 https://doi.org/10.1007/s12541-013-0075-1
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1007/s12541-013-0232-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002381191
    213 https://doi.org/10.1007/s12541-013-0232-6
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1007/s12541-013-0245-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034282028
    216 https://doi.org/10.1007/s12541-013-0245-1
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1007/s12541-013-0246-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037672461
    219 https://doi.org/10.1007/s12541-013-0246-0
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1007/s12541-013-0251-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046025701
    222 https://doi.org/10.1007/s12541-013-0251-3
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1007/s12541-013-0276-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039396578
    225 https://doi.org/10.1007/s12541-013-0276-7
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1007/s12541-013-0282-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025553297
    228 https://doi.org/10.1007/s12541-013-0282-9
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1007/s12541-013-0286-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032439809
    231 https://doi.org/10.1007/s12541-013-0286-5
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1007/s12541-013-0287-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017322620
    234 https://doi.org/10.1007/s12541-013-0287-4
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1007/s12541-013-0288-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046828477
    237 https://doi.org/10.1007/s12541-013-0288-3
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1007/s12541-013-0293-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023744194
    240 https://doi.org/10.1007/s12541-013-0293-6
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1007/s12541-013-0294-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047598468
    243 https://doi.org/10.1007/s12541-013-0294-5
    244 rdf:type schema:CreativeWork
    245 grid-institutes:grid.261112.7 schema:alternateName Department of Mechanical and Industrial Engineering, Northeastern University, 360 Huntington Avenue, 02115, Boston, United States
    246 schema:name Department of Mechanical and Industrial Engineering, Northeastern University, 360 Huntington Avenue, 02115, Boston, United States
    247 rdf:type schema:Organization
    248 grid-institutes:grid.452278.e schema:alternateName Singapore Institute of Manufacturing Technology (SIMTech), 71 Nanyang Drive, 638075, Singapore, Singapore
    249 schema:name Singapore Institute of Manufacturing Technology (SIMTech), 71 Nanyang Drive, 638075, Singapore, Singapore
    250 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...