Experimental verification of nonlinear model predictive tracking control for six-wheeled unmanned ground vehicles View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-05

AUTHORS

Heonyoung Lim, Yeonsik Kang, Changhwan Kim, Jongwon Kim

ABSTRACT

This paper presents a nonlinear model predictive tracking control scheme for a six-wheeled nonholonomic unmanned ground vehicles (UGVs). It is employed as a high-level guidance control with kinematic approximation for UGV motion. A nonlinear model predictive control algorithm solves trajectory planning and optimal control problems by sequentially solving an online numerical optimization problem. The optimal control inputs for the UGV are obtained with a gradient descent optimization algorithm considering constraints of UGV motion as well as its input constraints. The characteristics of the proposed controller in terms of tracking performance and collision avoidance were investigated. The real-time performance of the proposed numerical optimization algorithm was verified with an experimental six-wheeled UGV platform in indoor and outdoor environments. More... »

PAGES

831-840

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12541-014-0406-x

DOI

http://dx.doi.org/10.1007/s12541-014-0406-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029426108


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "School of Mechanical and Aerospace Engineering, Seoul National University, 151-744, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lim", 
        "givenName": "Heonyoung", 
        "id": "sg:person.010770127320.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010770127320.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kookmin University", 
          "id": "https://www.grid.ac/institutes/grid.91443.3b", 
          "name": [
            "Department of Automotive Engineering, Kookmin University, 136-702, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kang", 
        "givenName": "Yeonsik", 
        "id": "sg:person.011401553721.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011401553721.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Institute of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.35541.36", 
          "name": [
            "Korea Institute of Science and Technology, 305-701, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Changhwan", 
        "id": "sg:person.015073725375.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015073725375.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "School of Mechanical and Aerospace Engineering, Seoul National University, 151-744, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Jongwon", 
        "id": "sg:person.013611426734.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013611426734.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0005-1098(98)00073-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013464326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.robot.2007.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014290086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8407-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016013934", 
          "https://doi.org/10.1007/978-3-0348-8407-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8407-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016013934", 
          "https://doi.org/10.1007/978-3-0348-8407-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0045-7906(01)00048-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019615497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0045-7906(01)00048-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019615497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.robot.2006.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037156821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/70.143352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061215921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/70.880813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061216849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/9.241565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061243447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcst.2006.872512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061572304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcst.2008.2004878", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061572637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tits.2008.2011697", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061657522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmech.2002.1011250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061691930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tra.2002.804500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061784181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/robot.1990.126006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086263799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iros.2007.4399139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093620977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/robot.2005.1570292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093628646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mesa.2008.4735699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095261917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cdc.1997.649806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095783534"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-05", 
    "datePublishedReg": "2014-05-01", 
    "description": "This paper presents a nonlinear model predictive tracking control scheme for a six-wheeled nonholonomic unmanned ground vehicles (UGVs). It is employed as a high-level guidance control with kinematic approximation for UGV motion. A nonlinear model predictive control algorithm solves trajectory planning and optimal control problems by sequentially solving an online numerical optimization problem. The optimal control inputs for the UGV are obtained with a gradient descent optimization algorithm considering constraints of UGV motion as well as its input constraints. The characteristics of the proposed controller in terms of tracking performance and collision avoidance were investigated. The real-time performance of the proposed numerical optimization algorithm was verified with an experimental six-wheeled UGV platform in indoor and outdoor environments.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12541-014-0406-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135952", 
        "issn": [
          "2234-7593", 
          "2005-4602"
        ], 
        "name": "International Journal of Precision Engineering and Manufacturing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "Experimental verification of nonlinear model predictive tracking control for six-wheeled unmanned ground vehicles", 
    "pagination": "831-840", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8c2e3770b06c2e257c4192e08541dc072c12fe645e9efd251340ec335d5efd48"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12541-014-0406-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029426108"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12541-014-0406-x", 
      "https://app.dimensions.ai/details/publication/pub.1029426108"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000522.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs12541-014-0406-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12541-014-0406-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12541-014-0406-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12541-014-0406-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12541-014-0406-x'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12541-014-0406-x schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N1658f887bfa9463dbb61a0c95d0a074d
4 schema:citation sg:pub.10.1007/978-3-0348-8407-5
5 https://doi.org/10.1016/j.robot.2006.06.003
6 https://doi.org/10.1016/j.robot.2007.01.002
7 https://doi.org/10.1016/s0005-1098(98)00073-9
8 https://doi.org/10.1016/s0045-7906(01)00048-9
9 https://doi.org/10.1109/70.143352
10 https://doi.org/10.1109/70.880813
11 https://doi.org/10.1109/9.241565
12 https://doi.org/10.1109/cdc.1997.649806
13 https://doi.org/10.1109/iros.2007.4399139
14 https://doi.org/10.1109/mesa.2008.4735699
15 https://doi.org/10.1109/robot.1990.126006
16 https://doi.org/10.1109/robot.2005.1570292
17 https://doi.org/10.1109/tcst.2006.872512
18 https://doi.org/10.1109/tcst.2008.2004878
19 https://doi.org/10.1109/tits.2008.2011697
20 https://doi.org/10.1109/tmech.2002.1011250
21 https://doi.org/10.1109/tra.2002.804500
22 schema:datePublished 2014-05
23 schema:datePublishedReg 2014-05-01
24 schema:description This paper presents a nonlinear model predictive tracking control scheme for a six-wheeled nonholonomic unmanned ground vehicles (UGVs). It is employed as a high-level guidance control with kinematic approximation for UGV motion. A nonlinear model predictive control algorithm solves trajectory planning and optimal control problems by sequentially solving an online numerical optimization problem. The optimal control inputs for the UGV are obtained with a gradient descent optimization algorithm considering constraints of UGV motion as well as its input constraints. The characteristics of the proposed controller in terms of tracking performance and collision avoidance were investigated. The real-time performance of the proposed numerical optimization algorithm was verified with an experimental six-wheeled UGV platform in indoor and outdoor environments.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N8f457aa052864f928cc01e0ae62e8ffa
29 Nb3a43a1915fe43f39f8107bb83914df6
30 sg:journal.1135952
31 schema:name Experimental verification of nonlinear model predictive tracking control for six-wheeled unmanned ground vehicles
32 schema:pagination 831-840
33 schema:productId N1f4ca85242e04ff8acc20162d9f9399d
34 Nad782a9e613346bc9e2d144810f36fc2
35 Ndf36e4c650c24652be8e9ed0c84b18c1
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029426108
37 https://doi.org/10.1007/s12541-014-0406-x
38 schema:sdDatePublished 2019-04-10T22:34
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher N76fb66f85e90492cb0ef47c1089f8be9
41 schema:url http://link.springer.com/10.1007%2Fs12541-014-0406-x
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N1658f887bfa9463dbb61a0c95d0a074d rdf:first sg:person.010770127320.47
46 rdf:rest N3a8c931d970d424097a26dab4e2c16a8
47 N1f4ca85242e04ff8acc20162d9f9399d schema:name doi
48 schema:value 10.1007/s12541-014-0406-x
49 rdf:type schema:PropertyValue
50 N275854f52f484833b6095adc364bdf0c rdf:first sg:person.015073725375.40
51 rdf:rest Nfa66ba2de24147aa9aced94370326674
52 N3a8c931d970d424097a26dab4e2c16a8 rdf:first sg:person.011401553721.62
53 rdf:rest N275854f52f484833b6095adc364bdf0c
54 N76fb66f85e90492cb0ef47c1089f8be9 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N8f457aa052864f928cc01e0ae62e8ffa schema:volumeNumber 15
57 rdf:type schema:PublicationVolume
58 Nad782a9e613346bc9e2d144810f36fc2 schema:name readcube_id
59 schema:value 8c2e3770b06c2e257c4192e08541dc072c12fe645e9efd251340ec335d5efd48
60 rdf:type schema:PropertyValue
61 Nb3a43a1915fe43f39f8107bb83914df6 schema:issueNumber 5
62 rdf:type schema:PublicationIssue
63 Ndf36e4c650c24652be8e9ed0c84b18c1 schema:name dimensions_id
64 schema:value pub.1029426108
65 rdf:type schema:PropertyValue
66 Nfa66ba2de24147aa9aced94370326674 rdf:first sg:person.013611426734.26
67 rdf:rest rdf:nil
68 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
69 schema:name Mathematical Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
72 schema:name Applied Mathematics
73 rdf:type schema:DefinedTerm
74 sg:journal.1135952 schema:issn 2005-4602
75 2234-7593
76 schema:name International Journal of Precision Engineering and Manufacturing
77 rdf:type schema:Periodical
78 sg:person.010770127320.47 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
79 schema:familyName Lim
80 schema:givenName Heonyoung
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010770127320.47
82 rdf:type schema:Person
83 sg:person.011401553721.62 schema:affiliation https://www.grid.ac/institutes/grid.91443.3b
84 schema:familyName Kang
85 schema:givenName Yeonsik
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011401553721.62
87 rdf:type schema:Person
88 sg:person.013611426734.26 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
89 schema:familyName Kim
90 schema:givenName Jongwon
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013611426734.26
92 rdf:type schema:Person
93 sg:person.015073725375.40 schema:affiliation https://www.grid.ac/institutes/grid.35541.36
94 schema:familyName Kim
95 schema:givenName Changhwan
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015073725375.40
97 rdf:type schema:Person
98 sg:pub.10.1007/978-3-0348-8407-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016013934
99 https://doi.org/10.1007/978-3-0348-8407-5
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.robot.2006.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037156821
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.robot.2007.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014290086
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/s0005-1098(98)00073-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013464326
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/s0045-7906(01)00048-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019615497
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1109/70.143352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061215921
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1109/70.880813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061216849
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1109/9.241565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061243447
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1109/cdc.1997.649806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095783534
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1109/iros.2007.4399139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093620977
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1109/mesa.2008.4735699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095261917
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/robot.1990.126006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086263799
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/robot.2005.1570292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093628646
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/tcst.2006.872512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061572304
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/tcst.2008.2004878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061572637
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/tits.2008.2011697 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061657522
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/tmech.2002.1011250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061691930
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/tra.2002.804500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061784181
134 rdf:type schema:CreativeWork
135 https://www.grid.ac/institutes/grid.31501.36 schema:alternateName Seoul National University
136 schema:name School of Mechanical and Aerospace Engineering, Seoul National University, 151-744, Seoul, South Korea
137 rdf:type schema:Organization
138 https://www.grid.ac/institutes/grid.35541.36 schema:alternateName Korea Institute of Science and Technology
139 schema:name Korea Institute of Science and Technology, 305-701, Seoul, South Korea
140 rdf:type schema:Organization
141 https://www.grid.ac/institutes/grid.91443.3b schema:alternateName Kookmin University
142 schema:name Department of Automotive Engineering, Kookmin University, 136-702, Seoul, South Korea
143 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...