Determination of the dynamic knee joint range of motion during leg extension exercise using an EMG-driven model View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-01

AUTHORS

Jongsang Son, Seunghyeon Kim, Soonjae Ahn, Jeseong Ryu, Seonhong Hwang, Youngho Kim

ABSTRACT

In this study, we proposed a new approach for determining the dynamic knee joint range of motion according to the external load applied during leg extension exercise. One elderly participant volunteered. The dynamometer task was performed to develop a subject-specific model using maximum voluntary contractions. EMG signals were also measured simultaneously. After the dynamometer task, 3D motion data were captured during leg extension exercise. The data obtained from the dynamometer task were used to develop the subject-specific model using an EMG-driven model, and then the developed model was used to estimate joint moment during leg extension exercise. Adjusting the model parameters positively affected the correlation and RMS error. The correlation between the model prediction and the measured joint moment increased with decreasing RMS error. The predicted knee joint moments during the leg extension exercise showed the usual inverse parabolic shapes in terms of time. These results implied that the dynamic range of motion should vary according to the external load applied to the joint. In this paper, we proposed a novel method to determine the dynamic knee joint range of motion using an EMG-driven model. We expect that the proposed approach will be employed to design exercise/rehabilitation protocols for the elderly. More... »

PAGES

117-123

References to SciGraph publications

  • 2011-10. Calculation of knee joint moment in isometric and isokinetic knee motion in INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING
  • 1992-12. Aging and Muscle Function in SPORTS MEDICINE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12541-012-0016-4

    DOI

    http://dx.doi.org/10.1007/s12541-012-0016-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1013986061


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1106", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Human Movement and Sports Science", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Yonsei University", 
              "id": "https://www.grid.ac/institutes/grid.15444.30", 
              "name": [
                "Department of Biomedical Engineering, Institute of Medical Engineering, Yonsei University, 234, Maeji-ri, Heungup-myeon, 220-710, Wonju, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Son", 
            "givenName": "Jongsang", 
            "id": "sg:person.01254702267.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254702267.68"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yonsei University", 
              "id": "https://www.grid.ac/institutes/grid.15444.30", 
              "name": [
                "Department of Biomedical Engineering, Institute of Medical Engineering, Yonsei University, 234, Maeji-ri, Heungup-myeon, 220-710, Wonju, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "Seunghyeon", 
            "id": "sg:person.011306270725.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011306270725.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yonsei University", 
              "id": "https://www.grid.ac/institutes/grid.15444.30", 
              "name": [
                "Department of Biomedical Engineering, Institute of Medical Engineering, Yonsei University, 234, Maeji-ri, Heungup-myeon, 220-710, Wonju, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ahn", 
            "givenName": "Soonjae", 
            "id": "sg:person.01152335005.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152335005.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yonsei University", 
              "id": "https://www.grid.ac/institutes/grid.15444.30", 
              "name": [
                "Department of Biomedical Engineering, Institute of Medical Engineering, Yonsei University, 234, Maeji-ri, Heungup-myeon, 220-710, Wonju, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ryu", 
            "givenName": "Jeseong", 
            "id": "sg:person.013113220017.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013113220017.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yonsei University", 
              "id": "https://www.grid.ac/institutes/grid.15444.30", 
              "name": [
                "Department of Biomedical Engineering, Institute of Medical Engineering, Yonsei University, 234, Maeji-ri, Heungup-myeon, 220-710, Wonju, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hwang", 
            "givenName": "Seonhong", 
            "id": "sg:person.01106252246.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106252246.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yonsei University", 
              "id": "https://www.grid.ac/institutes/grid.15444.30", 
              "name": [
                "Department of Biomedical Engineering, Institute of Medical Engineering, Yonsei University, 234, Maeji-ri, Heungup-myeon, 220-710, Wonju, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "Youngho", 
            "id": "sg:person.0627065136.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627065136.38"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1249/00005768-199301000-00018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004129157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compbiomed.2009.09.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004965502"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.bioeng.3.1.245", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014318609"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0021-9290(91)90361-p", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014446107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/1050-6411(96)00030-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016752659"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12541-011-0124-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018561540", 
              "https://doi.org/10.1007/s12541-011-0124-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmpt.2005.08.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029593703"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmpt.2005.08.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029593703"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physio.2003.09.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029643590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.exger.2010.03.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031212675"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.humov.2007.01.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033152072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0021-9290(03)00152-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035355077"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0021-9290(03)00152-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035355077"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.2165/00007256-199214060-00005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035440439", 
              "https://doi.org/10.2165/00007256-199214060-00005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1207/s15327841mpee0602_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035672667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.clinbiomech.2008.08.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037039352"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1519/00139143-200512000-00003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037724530"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0021-9290(90)90349-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038641222"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0021-9290(03)00010-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044245472"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0021-9290(03)00010-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044245472"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jor.1100080310", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048058117"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1076/ejom.34.1.47.13157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058250185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0219519403000727", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062997075"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079210875", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/ptj/63.6.938", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1081995740"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-01", 
        "datePublishedReg": "2012-01-01", 
        "description": "In this study, we proposed a new approach for determining the dynamic knee joint range of motion according to the external load applied during leg extension exercise. One elderly participant volunteered. The dynamometer task was performed to develop a subject-specific model using maximum voluntary contractions. EMG signals were also measured simultaneously. After the dynamometer task, 3D motion data were captured during leg extension exercise. The data obtained from the dynamometer task were used to develop the subject-specific model using an EMG-driven model, and then the developed model was used to estimate joint moment during leg extension exercise. Adjusting the model parameters positively affected the correlation and RMS error. The correlation between the model prediction and the measured joint moment increased with decreasing RMS error. The predicted knee joint moments during the leg extension exercise showed the usual inverse parabolic shapes in terms of time. These results implied that the dynamic range of motion should vary according to the external load applied to the joint. In this paper, we proposed a novel method to determine the dynamic knee joint range of motion using an EMG-driven model. We expect that the proposed approach will be employed to design exercise/rehabilitation protocols for the elderly.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s12541-012-0016-4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1135952", 
            "issn": [
              "2234-7593", 
              "2005-4602"
            ], 
            "name": "International Journal of Precision Engineering and Manufacturing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "13"
          }
        ], 
        "name": "Determination of the dynamic knee joint range of motion during leg extension exercise using an EMG-driven model", 
        "pagination": "117-123", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "42a06372881145326a0d7624b71030700053b42c2be5a4653079fcd495b4eb00"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12541-012-0016-4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1013986061"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12541-012-0016-4", 
          "https://app.dimensions.ai/details/publication/pub.1013986061"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T20:49", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000521.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs12541-012-0016-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12541-012-0016-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12541-012-0016-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12541-012-0016-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12541-012-0016-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    163 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12541-012-0016-4 schema:about anzsrc-for:11
    2 anzsrc-for:1106
    3 schema:author Ne34294918e9246d2ae2b47773c5f0893
    4 schema:citation sg:pub.10.1007/s12541-011-0124-6
    5 sg:pub.10.2165/00007256-199214060-00005
    6 https://app.dimensions.ai/details/publication/pub.1079210875
    7 https://doi.org/10.1002/jor.1100080310
    8 https://doi.org/10.1016/0021-9290(90)90349-8
    9 https://doi.org/10.1016/0021-9290(91)90361-p
    10 https://doi.org/10.1016/1050-6411(96)00030-2
    11 https://doi.org/10.1016/j.clinbiomech.2008.08.008
    12 https://doi.org/10.1016/j.compbiomed.2009.09.002
    13 https://doi.org/10.1016/j.exger.2010.03.008
    14 https://doi.org/10.1016/j.humov.2007.01.008
    15 https://doi.org/10.1016/j.jmpt.2005.08.013
    16 https://doi.org/10.1016/j.physio.2003.09.001
    17 https://doi.org/10.1016/s0021-9290(03)00010-1
    18 https://doi.org/10.1016/s0021-9290(03)00152-0
    19 https://doi.org/10.1076/ejom.34.1.47.13157
    20 https://doi.org/10.1093/ptj/63.6.938
    21 https://doi.org/10.1142/s0219519403000727
    22 https://doi.org/10.1146/annurev.bioeng.3.1.245
    23 https://doi.org/10.1207/s15327841mpee0602_1
    24 https://doi.org/10.1249/00005768-199301000-00018
    25 https://doi.org/10.1519/00139143-200512000-00003
    26 schema:datePublished 2012-01
    27 schema:datePublishedReg 2012-01-01
    28 schema:description In this study, we proposed a new approach for determining the dynamic knee joint range of motion according to the external load applied during leg extension exercise. One elderly participant volunteered. The dynamometer task was performed to develop a subject-specific model using maximum voluntary contractions. EMG signals were also measured simultaneously. After the dynamometer task, 3D motion data were captured during leg extension exercise. The data obtained from the dynamometer task were used to develop the subject-specific model using an EMG-driven model, and then the developed model was used to estimate joint moment during leg extension exercise. Adjusting the model parameters positively affected the correlation and RMS error. The correlation between the model prediction and the measured joint moment increased with decreasing RMS error. The predicted knee joint moments during the leg extension exercise showed the usual inverse parabolic shapes in terms of time. These results implied that the dynamic range of motion should vary according to the external load applied to the joint. In this paper, we proposed a novel method to determine the dynamic knee joint range of motion using an EMG-driven model. We expect that the proposed approach will be employed to design exercise/rehabilitation protocols for the elderly.
    29 schema:genre research_article
    30 schema:inLanguage en
    31 schema:isAccessibleForFree false
    32 schema:isPartOf N85c060a790d24321a36dce9ef2c5a4f1
    33 Na926765e508349fdad97ca9203ac6851
    34 sg:journal.1135952
    35 schema:name Determination of the dynamic knee joint range of motion during leg extension exercise using an EMG-driven model
    36 schema:pagination 117-123
    37 schema:productId N02d6d5ea1abf4eba891cd1417557c73d
    38 N6a9b78bffe4f4cb19ef4bf4e5921f297
    39 Nf07317772fba47feaee7c81b12d56d24
    40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013986061
    41 https://doi.org/10.1007/s12541-012-0016-4
    42 schema:sdDatePublished 2019-04-10T20:49
    43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    44 schema:sdPublisher N363df98e2e354beba297440ec1095ea6
    45 schema:url http://link.springer.com/10.1007%2Fs12541-012-0016-4
    46 sgo:license sg:explorer/license/
    47 sgo:sdDataset articles
    48 rdf:type schema:ScholarlyArticle
    49 N02d6d5ea1abf4eba891cd1417557c73d schema:name doi
    50 schema:value 10.1007/s12541-012-0016-4
    51 rdf:type schema:PropertyValue
    52 N363df98e2e354beba297440ec1095ea6 schema:name Springer Nature - SN SciGraph project
    53 rdf:type schema:Organization
    54 N6a9b78bffe4f4cb19ef4bf4e5921f297 schema:name readcube_id
    55 schema:value 42a06372881145326a0d7624b71030700053b42c2be5a4653079fcd495b4eb00
    56 rdf:type schema:PropertyValue
    57 N85c060a790d24321a36dce9ef2c5a4f1 schema:issueNumber 1
    58 rdf:type schema:PublicationIssue
    59 N9f528ce2d7964d61896659743fdce936 rdf:first sg:person.01152335005.27
    60 rdf:rest Nd3b55da3e4784a9e9edc51494b2f237d
    61 Na926765e508349fdad97ca9203ac6851 schema:volumeNumber 13
    62 rdf:type schema:PublicationVolume
    63 Nb4ac4a22a3b94148be69feb0662962c0 rdf:first sg:person.01106252246.15
    64 rdf:rest Nd72034498765432e97bfbca533665412
    65 Nd3b55da3e4784a9e9edc51494b2f237d rdf:first sg:person.013113220017.22
    66 rdf:rest Nb4ac4a22a3b94148be69feb0662962c0
    67 Nd72034498765432e97bfbca533665412 rdf:first sg:person.0627065136.38
    68 rdf:rest rdf:nil
    69 Ne34294918e9246d2ae2b47773c5f0893 rdf:first sg:person.01254702267.68
    70 rdf:rest Nf2ac13c7ef984a6d807980c90c7b2c7f
    71 Nf07317772fba47feaee7c81b12d56d24 schema:name dimensions_id
    72 schema:value pub.1013986061
    73 rdf:type schema:PropertyValue
    74 Nf2ac13c7ef984a6d807980c90c7b2c7f rdf:first sg:person.011306270725.54
    75 rdf:rest N9f528ce2d7964d61896659743fdce936
    76 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Medical and Health Sciences
    78 rdf:type schema:DefinedTerm
    79 anzsrc-for:1106 schema:inDefinedTermSet anzsrc-for:
    80 schema:name Human Movement and Sports Science
    81 rdf:type schema:DefinedTerm
    82 sg:journal.1135952 schema:issn 2005-4602
    83 2234-7593
    84 schema:name International Journal of Precision Engineering and Manufacturing
    85 rdf:type schema:Periodical
    86 sg:person.01106252246.15 schema:affiliation https://www.grid.ac/institutes/grid.15444.30
    87 schema:familyName Hwang
    88 schema:givenName Seonhong
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106252246.15
    90 rdf:type schema:Person
    91 sg:person.011306270725.54 schema:affiliation https://www.grid.ac/institutes/grid.15444.30
    92 schema:familyName Kim
    93 schema:givenName Seunghyeon
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011306270725.54
    95 rdf:type schema:Person
    96 sg:person.01152335005.27 schema:affiliation https://www.grid.ac/institutes/grid.15444.30
    97 schema:familyName Ahn
    98 schema:givenName Soonjae
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152335005.27
    100 rdf:type schema:Person
    101 sg:person.01254702267.68 schema:affiliation https://www.grid.ac/institutes/grid.15444.30
    102 schema:familyName Son
    103 schema:givenName Jongsang
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254702267.68
    105 rdf:type schema:Person
    106 sg:person.013113220017.22 schema:affiliation https://www.grid.ac/institutes/grid.15444.30
    107 schema:familyName Ryu
    108 schema:givenName Jeseong
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013113220017.22
    110 rdf:type schema:Person
    111 sg:person.0627065136.38 schema:affiliation https://www.grid.ac/institutes/grid.15444.30
    112 schema:familyName Kim
    113 schema:givenName Youngho
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627065136.38
    115 rdf:type schema:Person
    116 sg:pub.10.1007/s12541-011-0124-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018561540
    117 https://doi.org/10.1007/s12541-011-0124-6
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.2165/00007256-199214060-00005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035440439
    120 https://doi.org/10.2165/00007256-199214060-00005
    121 rdf:type schema:CreativeWork
    122 https://app.dimensions.ai/details/publication/pub.1079210875 schema:CreativeWork
    123 https://doi.org/10.1002/jor.1100080310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048058117
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1016/0021-9290(90)90349-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038641222
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1016/0021-9290(91)90361-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1014446107
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1016/1050-6411(96)00030-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016752659
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1016/j.clinbiomech.2008.08.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037039352
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1016/j.compbiomed.2009.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004965502
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1016/j.exger.2010.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031212675
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1016/j.humov.2007.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033152072
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1016/j.jmpt.2005.08.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029593703
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1016/j.physio.2003.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029643590
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1016/s0021-9290(03)00010-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044245472
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1016/s0021-9290(03)00152-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035355077
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1076/ejom.34.1.47.13157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058250185
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1093/ptj/63.6.938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1081995740
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1142/s0219519403000727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062997075
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1146/annurev.bioeng.3.1.245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014318609
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1207/s15327841mpee0602_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035672667
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1249/00005768-199301000-00018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004129157
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1519/00139143-200512000-00003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037724530
    160 rdf:type schema:CreativeWork
    161 https://www.grid.ac/institutes/grid.15444.30 schema:alternateName Yonsei University
    162 schema:name Department of Biomedical Engineering, Institute of Medical Engineering, Yonsei University, 234, Maeji-ri, Heungup-myeon, 220-710, Wonju, South Korea
    163 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...