A Particle Swarm Optimization-Based Multi-level Processing Parameters Optimization Method for Controlling Microstructures of an Aged Superalloy During Isothermal Forging View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-04

AUTHORS

Dong-Dong Chen, Y. C. Lin

ABSTRACT

N/A

References to SciGraph publications

Journal

TITLE

Metals and Materials International

ISSUE

N/A

VOLUME

N/A

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12540-019-00265-8

DOI

http://dx.doi.org/10.1007/s12540-019-00265-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113263655


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "familyName": "Chen", 
        "givenName": "Dong-Dong", 
        "type": "Person"
      }, 
      {
        "familyName": "Lin", 
        "givenName": "Y. C.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.msea.2013.09.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006060441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2016.01.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007599473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2014.10.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007746036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-013-1841-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014866892", 
          "https://doi.org/10.1007/s11661-013-1841-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2014.08.187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018663841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-016-2556-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020808480", 
          "https://doi.org/10.1007/s00521-016-2556-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-016-2556-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020808480", 
          "https://doi.org/10.1007/s00521-016-2556-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02664902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020816054", 
          "https://doi.org/10.1007/bf02664902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02664902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020816054", 
          "https://doi.org/10.1007/bf02664902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/htmp-2014-0121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021472921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.commatsci.2014.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021585819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2014.12.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023631181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2016.03.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025115180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2010.11.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027704529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2016.02.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028358952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6462(96)00390-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030341289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.commatsci.2011.05.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036160610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1557/jmr.2016.325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038795501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2009.05.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040361984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2013.12.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040713776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12540-015-5141-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040796710", 
          "https://doi.org/10.1007/s12540-015-5141-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.vacuum.2016.12.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043168786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2015.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043856444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00339-016-0404-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043991154", 
          "https://doi.org/10.1007/s00339-016-0404-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00339-016-0404-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043991154", 
          "https://doi.org/10.1007/s00339-016-0404-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2011.01.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045228292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cirp.2011.03.142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047438727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2013.12.105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048236294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2011.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050467458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/mst.1998.14.1.25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050535668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2012.05.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050957932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.commatsci.2014.10.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051088317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-997-0122-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051283078", 
          "https://doi.org/10.1007/s11661-997-0122-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-997-0122-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051283078", 
          "https://doi.org/10.1007/s11661-997-0122-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11665-016-2230-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051440011", 
          "https://doi.org/10.1007/s11665-016-2230-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11665-016-2230-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051440011", 
          "https://doi.org/10.1007/s11665-016-2230-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12540-015-4485-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051947684", 
          "https://doi.org/10.1007/s12540-015-4485-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2015.07.213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052002138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmecsci.2013.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052770326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12540-017-6313-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084035502", 
          "https://doi.org/10.1007/s12540-017-6313-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12540-017-6313-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084035502", 
          "https://doi.org/10.1007/s12540-017-6313-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12540-017-6538-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084035508", 
          "https://doi.org/10.1007/s12540-017-6538-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12540-017-6538-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084035508", 
          "https://doi.org/10.1007/s12540-017-6538-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2017.03.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084084444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.vacuum.2017.04.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085135411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.commatsci.2017.05.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085713347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12540-017-6391-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091500063", 
          "https://doi.org/10.1007/s12540-017-6391-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.commatsci.2017.10.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092243478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2017.12.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099621253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmapro.2017.12.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100167301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12540-017-7201-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100197254", 
          "https://doi.org/10.1007/s12540-017-7201-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/ffe.12772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100475329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.vacuum.2018.02.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101298670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijfatigue.2018.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103184330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matchar.2018.04.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103655096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2018.05.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103952007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-018-2105-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103962763", 
          "https://doi.org/10.1007/s00170-018-2105-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-018-2105-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103962763", 
          "https://doi.org/10.1007/s00170-018-2105-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12540-018-0128-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104476547", 
          "https://doi.org/10.1007/s12540-018-0128-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-018-4707-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104535394", 
          "https://doi.org/10.1007/s11661-018-4707-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-018-4707-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104535394", 
          "https://doi.org/10.1007/s11661-018-4707-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2018.06.146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104907609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/ma11091599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106525771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.commatsci.2018.09.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107373237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matchar.2018.10.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108006179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10426914.2018.1532587", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109895188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11665-018-3813-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110752833", 
          "https://doi.org/10.1007/s11665-018-3813-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmapro.2019.01.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111456499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmapro.2019.01.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111456499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matchar.2019.03.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112850395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matchar.2019.03.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112850395"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-04", 
    "datePublishedReg": "2019-04-04", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12540-019-00265-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136083", 
        "issn": [
          "1225-9438", 
          "2005-4149"
        ], 
        "name": "Metals and Materials International", 
        "type": "Periodical"
      }
    ], 
    "name": "A Particle Swarm Optimization-Based Multi-level Processing Parameters Optimization Method for Controlling Microstructures of an Aged Superalloy During Isothermal Forging", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12540-019-00265-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113263655"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12540-019-00265-8", 
      "https://app.dimensions.ai/details/publication/pub.1113263655"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117087_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s12540-019-00265-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12540-019-00265-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12540-019-00265-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12540-019-00265-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12540-019-00265-8'


 

This table displays all metadata directly associated to this object as RDF triples.

237 TRIPLES      18 PREDICATES      79 URIs      13 LITERALS      4 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12540-019-00265-8 schema:author N2ff02b3e42844b0abe92c993a1de2308
2 schema:citation sg:pub.10.1007/bf02664902
3 sg:pub.10.1007/s00170-018-2105-8
4 sg:pub.10.1007/s00339-016-0404-1
5 sg:pub.10.1007/s00521-016-2556-5
6 sg:pub.10.1007/s11661-013-1841-5
7 sg:pub.10.1007/s11661-018-4707-z
8 sg:pub.10.1007/s11661-997-0122-6
9 sg:pub.10.1007/s11665-016-2230-1
10 sg:pub.10.1007/s11665-018-3813-9
11 sg:pub.10.1007/s12540-015-4485-8
12 sg:pub.10.1007/s12540-015-5141-z
13 sg:pub.10.1007/s12540-017-6313-9
14 sg:pub.10.1007/s12540-017-6391-8
15 sg:pub.10.1007/s12540-017-6538-7
16 sg:pub.10.1007/s12540-017-7201-z
17 sg:pub.10.1007/s12540-018-0128-1
18 https://doi.org/10.1016/j.asoc.2011.01.037
19 https://doi.org/10.1016/j.cirp.2011.03.142
20 https://doi.org/10.1016/j.commatsci.2011.05.048
21 https://doi.org/10.1016/j.commatsci.2014.10.009
22 https://doi.org/10.1016/j.commatsci.2014.10.044
23 https://doi.org/10.1016/j.commatsci.2017.05.009
24 https://doi.org/10.1016/j.commatsci.2017.10.007
25 https://doi.org/10.1016/j.commatsci.2018.09.055
26 https://doi.org/10.1016/j.ijfatigue.2018.04.006
27 https://doi.org/10.1016/j.ijmecsci.2013.11.003
28 https://doi.org/10.1016/j.jallcom.2014.08.187
29 https://doi.org/10.1016/j.jallcom.2015.04.008
30 https://doi.org/10.1016/j.jallcom.2015.07.213
31 https://doi.org/10.1016/j.jallcom.2017.03.029
32 https://doi.org/10.1016/j.jallcom.2018.06.146
33 https://doi.org/10.1016/j.jmapro.2017.12.015
34 https://doi.org/10.1016/j.jmapro.2019.01.021
35 https://doi.org/10.1016/j.matchar.2018.04.025
36 https://doi.org/10.1016/j.matchar.2018.10.031
37 https://doi.org/10.1016/j.matchar.2019.03.034
38 https://doi.org/10.1016/j.matdes.2010.11.048
39 https://doi.org/10.1016/j.matdes.2011.01.007
40 https://doi.org/10.1016/j.matdes.2013.12.072
41 https://doi.org/10.1016/j.matdes.2014.12.020
42 https://doi.org/10.1016/j.matdes.2016.01.038
43 https://doi.org/10.1016/j.matdes.2016.02.052
44 https://doi.org/10.1016/j.matdes.2016.03.050
45 https://doi.org/10.1016/j.matdes.2018.05.022
46 https://doi.org/10.1016/j.msea.2009.05.056
47 https://doi.org/10.1016/j.msea.2012.05.048
48 https://doi.org/10.1016/j.msea.2013.09.049
49 https://doi.org/10.1016/j.msea.2013.12.105
50 https://doi.org/10.1016/j.msea.2014.10.031
51 https://doi.org/10.1016/j.msea.2017.12.013
52 https://doi.org/10.1016/j.vacuum.2016.12.022
53 https://doi.org/10.1016/j.vacuum.2017.04.030
54 https://doi.org/10.1016/j.vacuum.2018.02.034
55 https://doi.org/10.1016/s1359-6462(96)00390-9
56 https://doi.org/10.1080/10426914.2018.1532587
57 https://doi.org/10.1111/ffe.12772
58 https://doi.org/10.1179/mst.1998.14.1.25
59 https://doi.org/10.1515/htmp-2014-0121
60 https://doi.org/10.1557/jmr.2016.325
61 https://doi.org/10.3390/ma11091599
62 schema:datePublished 2019-04-04
63 schema:datePublishedReg 2019-04-04
64 schema:genre research_article
65 schema:inLanguage en
66 schema:isAccessibleForFree false
67 schema:isPartOf sg:journal.1136083
68 schema:name A Particle Swarm Optimization-Based Multi-level Processing Parameters Optimization Method for Controlling Microstructures of an Aged Superalloy During Isothermal Forging
69 schema:productId Na869a059332a43fcaff95896c462c74e
70 Nbef9cdd8f96a4011a9567708bb75d0f2
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113263655
72 https://doi.org/10.1007/s12540-019-00265-8
73 schema:sdDatePublished 2019-04-11T14:16
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher N1be6f62a2319413fb93f2f73c1093f30
76 schema:url http://link.springer.com/10.1007/s12540-019-00265-8
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N0579c4c6f71941378840e843bcc74700 schema:familyName Chen
81 schema:givenName Dong-Dong
82 rdf:type schema:Person
83 N1be6f62a2319413fb93f2f73c1093f30 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 N28d8e9713c804a9ba3b40add865e55b9 rdf:first N6fced203b7eb445a974c08dac33da294
86 rdf:rest rdf:nil
87 N2ff02b3e42844b0abe92c993a1de2308 rdf:first N0579c4c6f71941378840e843bcc74700
88 rdf:rest N28d8e9713c804a9ba3b40add865e55b9
89 N6fced203b7eb445a974c08dac33da294 schema:familyName Lin
90 schema:givenName Y. C.
91 rdf:type schema:Person
92 Na869a059332a43fcaff95896c462c74e schema:name dimensions_id
93 schema:value pub.1113263655
94 rdf:type schema:PropertyValue
95 Nbef9cdd8f96a4011a9567708bb75d0f2 schema:name doi
96 schema:value 10.1007/s12540-019-00265-8
97 rdf:type schema:PropertyValue
98 sg:journal.1136083 schema:issn 1225-9438
99 2005-4149
100 schema:name Metals and Materials International
101 rdf:type schema:Periodical
102 sg:pub.10.1007/bf02664902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020816054
103 https://doi.org/10.1007/bf02664902
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s00170-018-2105-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103962763
106 https://doi.org/10.1007/s00170-018-2105-8
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s00339-016-0404-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043991154
109 https://doi.org/10.1007/s00339-016-0404-1
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s00521-016-2556-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020808480
112 https://doi.org/10.1007/s00521-016-2556-5
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s11661-013-1841-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014866892
115 https://doi.org/10.1007/s11661-013-1841-5
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s11661-018-4707-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1104535394
118 https://doi.org/10.1007/s11661-018-4707-z
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s11661-997-0122-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051283078
121 https://doi.org/10.1007/s11661-997-0122-6
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s11665-016-2230-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051440011
124 https://doi.org/10.1007/s11665-016-2230-1
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s11665-018-3813-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110752833
127 https://doi.org/10.1007/s11665-018-3813-9
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s12540-015-4485-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051947684
130 https://doi.org/10.1007/s12540-015-4485-8
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s12540-015-5141-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1040796710
133 https://doi.org/10.1007/s12540-015-5141-z
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s12540-017-6313-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084035502
136 https://doi.org/10.1007/s12540-017-6313-9
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s12540-017-6391-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091500063
139 https://doi.org/10.1007/s12540-017-6391-8
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s12540-017-6538-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084035508
142 https://doi.org/10.1007/s12540-017-6538-7
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s12540-017-7201-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1100197254
145 https://doi.org/10.1007/s12540-017-7201-z
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s12540-018-0128-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104476547
148 https://doi.org/10.1007/s12540-018-0128-1
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.asoc.2011.01.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045228292
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.cirp.2011.03.142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047438727
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.commatsci.2011.05.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036160610
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.commatsci.2014.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021585819
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.commatsci.2014.10.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051088317
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.commatsci.2017.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085713347
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.commatsci.2017.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092243478
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.commatsci.2018.09.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107373237
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.ijfatigue.2018.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103184330
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.ijmecsci.2013.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052770326
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.jallcom.2014.08.187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018663841
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.jallcom.2015.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043856444
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.jallcom.2015.07.213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052002138
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.jallcom.2017.03.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084084444
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.jallcom.2018.06.146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104907609
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.jmapro.2017.12.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100167301
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.jmapro.2019.01.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111456499
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.matchar.2018.04.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103655096
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.matchar.2018.10.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108006179
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.matchar.2019.03.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112850395
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.matdes.2010.11.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027704529
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.matdes.2011.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050467458
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.matdes.2013.12.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040713776
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.matdes.2014.12.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023631181
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.matdes.2016.01.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007599473
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.matdes.2016.02.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028358952
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.matdes.2016.03.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025115180
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.matdes.2018.05.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103952007
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.msea.2009.05.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040361984
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/j.msea.2012.05.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050957932
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/j.msea.2013.09.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006060441
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/j.msea.2013.12.105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048236294
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/j.msea.2014.10.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007746036
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/j.msea.2017.12.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099621253
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/j.vacuum.2016.12.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043168786
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/j.vacuum.2017.04.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085135411
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/j.vacuum.2018.02.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101298670
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/s1359-6462(96)00390-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030341289
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1080/10426914.2018.1532587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109895188
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1111/ffe.12772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100475329
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1179/mst.1998.14.1.25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050535668
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1515/htmp-2014-0121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021472921
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1557/jmr.2016.325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038795501
235 rdf:type schema:CreativeWork
236 https://doi.org/10.3390/ma11091599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106525771
237 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...