Reflectance Characteristics of Al Alloys Containing Si, Mg, Cu, and Lanthanide (Nd, Sm, Gd) for 3D Printing View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-14

AUTHORS

Gwang Mook Choi, Dae Guen Kim, Byoungyong Im, Hong Jun Chae

ABSTRACT

To fabricate a low-reflectance aluminum alloy, we have analyzed the changes in reflectance according to the morphology, components, and composition of the aluminum alloy. We find that the larger the particle size of the powder, the lower is the reflectance. This is attributed to the fact that the larger the particle size, the greater is the amount of light absorbed into the interparticle space in the powder. In addition, the reflectance decreases with increase in the Si and Mg contents, because of the lower reflectance of the strengthening phase formed in the alloy as compared to that of aluminum. In contrast, lanthanide addition causes an increase in the reflectance, which is attributed to an increase in the electrical conductivity of the alloy. More... »

PAGES

1-10

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12540-019-00256-9

DOI

http://dx.doi.org/10.1007/s12540-019-00256-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112141941


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Advanced Engineering", 
          "id": "https://www.grid.ac/institutes/grid.486772.8", 
          "name": [
            "Center for Advanced Materials and Processing, Institute for Advanced Engineering, 17180, Yongin, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Gwang Mook", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Advanced Engineering", 
          "id": "https://www.grid.ac/institutes/grid.486772.8", 
          "name": [
            "Center for Advanced Materials and Processing, Institute for Advanced Engineering, 17180, Yongin, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Dae Guen", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Advanced Engineering", 
          "id": "https://www.grid.ac/institutes/grid.486772.8", 
          "name": [
            "Center for Advanced Materials and Processing, Institute for Advanced Engineering, 17180, Yongin, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Im", 
        "givenName": "Byoungyong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Advanced Engineering", 
          "id": "https://www.grid.ac/institutes/grid.486772.8", 
          "name": [
            "Center for Advanced Materials and Processing, Institute for Advanced Engineering, 17180, Yongin, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chae", 
        "givenName": "Hong Jun", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0925-8388(95)01897-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009785641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10584580490892737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010591056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0248(91)90119-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021894838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0248(91)90119-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021894838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-999-0301-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023270857", 
          "https://doi.org/10.1007/s11661-999-0301-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-999-0301-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023270857", 
          "https://doi.org/10.1007/s11661-999-0301-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2013.04.089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025633064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/00035591011058192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029391588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep24585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030310194", 
          "https://doi.org/10.1038/srep24585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/amr.845.355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039978131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2007.12.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041298110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02653917", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041549957", 
          "https://doi.org/10.1007/bf02653917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02653917", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041549957", 
          "https://doi.org/10.1007/bf02653917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2010.02.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046202042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp810808h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056112702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp810808h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056112702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.277.5330.1221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062557814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature23894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091859364", 
          "https://doi.org/10.1038/nature23894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature23894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091859364", 
          "https://doi.org/10.1038/nature23894"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-14", 
    "datePublishedReg": "2019-02-14", 
    "description": "To fabricate a low-reflectance aluminum alloy, we have analyzed the changes in reflectance according to the morphology, components, and composition of the aluminum alloy. We find that the larger the particle size of the powder, the lower is the reflectance. This is attributed to the fact that the larger the particle size, the greater is the amount of light absorbed into the interparticle space in the powder. In addition, the reflectance decreases with increase in the Si and Mg contents, because of the lower reflectance of the strengthening phase formed in the alloy as compared to that of aluminum. In contrast, lanthanide addition causes an increase in the reflectance, which is attributed to an increase in the electrical conductivity of the alloy.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12540-019-00256-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136083", 
        "issn": [
          "1225-9438", 
          "2005-4149"
        ], 
        "name": "Metals and Materials International", 
        "type": "Periodical"
      }
    ], 
    "name": "Reflectance Characteristics of Al Alloys Containing Si, Mg, Cu, and Lanthanide (Nd, Sm, Gd) for 3D Printing", 
    "pagination": "1-10", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ae304bc4a180b4328136c309521bb2116fcd260941ff78471607fc3e7264136a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12540-019-00256-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112141941"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12540-019-00256-9", 
      "https://app.dimensions.ai/details/publication/pub.1112141941"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000337_0000000337/records_37546_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12540-019-00256-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12540-019-00256-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12540-019-00256-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12540-019-00256-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12540-019-00256-9'


 

This table displays all metadata directly associated to this object as RDF triples.

118 TRIPLES      21 PREDICATES      38 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12540-019-00256-9 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N0dc21a13cca64ddd8bba74358bf7310d
4 schema:citation sg:pub.10.1007/bf02653917
5 sg:pub.10.1007/s11661-999-0301-8
6 sg:pub.10.1038/nature23894
7 sg:pub.10.1038/srep24585
8 https://doi.org/10.1016/0022-0248(91)90119-p
9 https://doi.org/10.1016/0925-8388(95)01897-2
10 https://doi.org/10.1016/j.matdes.2013.04.089
11 https://doi.org/10.1016/j.msea.2007.12.032
12 https://doi.org/10.1016/j.msea.2010.02.029
13 https://doi.org/10.1021/jp810808h
14 https://doi.org/10.1080/10584580490892737
15 https://doi.org/10.1108/00035591011058192
16 https://doi.org/10.1126/science.277.5330.1221
17 https://doi.org/10.4028/www.scientific.net/amr.845.355
18 schema:datePublished 2019-02-14
19 schema:datePublishedReg 2019-02-14
20 schema:description To fabricate a low-reflectance aluminum alloy, we have analyzed the changes in reflectance according to the morphology, components, and composition of the aluminum alloy. We find that the larger the particle size of the powder, the lower is the reflectance. This is attributed to the fact that the larger the particle size, the greater is the amount of light absorbed into the interparticle space in the powder. In addition, the reflectance decreases with increase in the Si and Mg contents, because of the lower reflectance of the strengthening phase formed in the alloy as compared to that of aluminum. In contrast, lanthanide addition causes an increase in the reflectance, which is attributed to an increase in the electrical conductivity of the alloy.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf sg:journal.1136083
25 schema:name Reflectance Characteristics of Al Alloys Containing Si, Mg, Cu, and Lanthanide (Nd, Sm, Gd) for 3D Printing
26 schema:pagination 1-10
27 schema:productId N5a4a791c39254da6ad21c0d002592898
28 N7d6a2dc9cc2e46db97f38272c079b8fd
29 N80fc76f54dad4e2ca95cbbdadd4e2b13
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112141941
31 https://doi.org/10.1007/s12540-019-00256-9
32 schema:sdDatePublished 2019-04-11T09:06
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N2a5cc5f49e9c4f119acc6e7605b3c9f9
35 schema:url https://link.springer.com/10.1007%2Fs12540-019-00256-9
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N001ca5a1d0b24b8ebbf6aece167048c0 rdf:first Nb9e9bad523194e4cbe1a59b129363582
40 rdf:rest rdf:nil
41 N0dc21a13cca64ddd8bba74358bf7310d rdf:first Nf5367b5b4c814421abd25ae196fb00d6
42 rdf:rest N4a4c36071a454542bd835fdeab3971ae
43 N2a5cc5f49e9c4f119acc6e7605b3c9f9 schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 N4a4c36071a454542bd835fdeab3971ae rdf:first Nf979a8ead2f44d38886077b7ac578d0f
46 rdf:rest Ne400810aeac444489865b1554e3be706
47 N5a4a791c39254da6ad21c0d002592898 schema:name doi
48 schema:value 10.1007/s12540-019-00256-9
49 rdf:type schema:PropertyValue
50 N7d6a2dc9cc2e46db97f38272c079b8fd schema:name dimensions_id
51 schema:value pub.1112141941
52 rdf:type schema:PropertyValue
53 N80fc76f54dad4e2ca95cbbdadd4e2b13 schema:name readcube_id
54 schema:value ae304bc4a180b4328136c309521bb2116fcd260941ff78471607fc3e7264136a
55 rdf:type schema:PropertyValue
56 Nad0b05cdba8940059ad5224bb841287b schema:affiliation https://www.grid.ac/institutes/grid.486772.8
57 schema:familyName Im
58 schema:givenName Byoungyong
59 rdf:type schema:Person
60 Nb9e9bad523194e4cbe1a59b129363582 schema:affiliation https://www.grid.ac/institutes/grid.486772.8
61 schema:familyName Chae
62 schema:givenName Hong Jun
63 rdf:type schema:Person
64 Ne400810aeac444489865b1554e3be706 rdf:first Nad0b05cdba8940059ad5224bb841287b
65 rdf:rest N001ca5a1d0b24b8ebbf6aece167048c0
66 Nf5367b5b4c814421abd25ae196fb00d6 schema:affiliation https://www.grid.ac/institutes/grid.486772.8
67 schema:familyName Choi
68 schema:givenName Gwang Mook
69 rdf:type schema:Person
70 Nf979a8ead2f44d38886077b7ac578d0f schema:affiliation https://www.grid.ac/institutes/grid.486772.8
71 schema:familyName Kim
72 schema:givenName Dae Guen
73 rdf:type schema:Person
74 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
75 schema:name Engineering
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
78 schema:name Materials Engineering
79 rdf:type schema:DefinedTerm
80 sg:journal.1136083 schema:issn 1225-9438
81 2005-4149
82 schema:name Metals and Materials International
83 rdf:type schema:Periodical
84 sg:pub.10.1007/bf02653917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041549957
85 https://doi.org/10.1007/bf02653917
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/s11661-999-0301-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023270857
88 https://doi.org/10.1007/s11661-999-0301-8
89 rdf:type schema:CreativeWork
90 sg:pub.10.1038/nature23894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091859364
91 https://doi.org/10.1038/nature23894
92 rdf:type schema:CreativeWork
93 sg:pub.10.1038/srep24585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030310194
94 https://doi.org/10.1038/srep24585
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/0022-0248(91)90119-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1021894838
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/0925-8388(95)01897-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009785641
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.matdes.2013.04.089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025633064
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/j.msea.2007.12.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041298110
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.msea.2010.02.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046202042
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1021/jp810808h schema:sameAs https://app.dimensions.ai/details/publication/pub.1056112702
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1080/10584580490892737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010591056
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1108/00035591011058192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029391588
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1126/science.277.5330.1221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062557814
113 rdf:type schema:CreativeWork
114 https://doi.org/10.4028/www.scientific.net/amr.845.355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039978131
115 rdf:type schema:CreativeWork
116 https://www.grid.ac/institutes/grid.486772.8 schema:alternateName Institute for Advanced Engineering
117 schema:name Center for Advanced Materials and Processing, Institute for Advanced Engineering, 17180, Yongin, Republic of Korea
118 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...