Reflectance Characteristics of Al Alloys Containing Si, Mg, Cu, and Lanthanide (Nd, Sm, Gd) for 3D Printing View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-14

AUTHORS

Gwang Mook Choi, Dae Guen Kim, Byoungyong Im, Hong Jun Chae

ABSTRACT

To fabricate a low-reflectance aluminum alloy, we have analyzed the changes in reflectance according to the morphology, components, and composition of the aluminum alloy. We find that the larger the particle size of the powder, the lower is the reflectance. This is attributed to the fact that the larger the particle size, the greater is the amount of light absorbed into the interparticle space in the powder. In addition, the reflectance decreases with increase in the Si and Mg contents, because of the lower reflectance of the strengthening phase formed in the alloy as compared to that of aluminum. In contrast, lanthanide addition causes an increase in the reflectance, which is attributed to an increase in the electrical conductivity of the alloy. More... »

PAGES

1-10

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12540-019-00256-9

DOI

http://dx.doi.org/10.1007/s12540-019-00256-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112141941


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Advanced Engineering", 
          "id": "https://www.grid.ac/institutes/grid.486772.8", 
          "name": [
            "Center for Advanced Materials and Processing, Institute for Advanced Engineering, 17180, Yongin, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Gwang Mook", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Advanced Engineering", 
          "id": "https://www.grid.ac/institutes/grid.486772.8", 
          "name": [
            "Center for Advanced Materials and Processing, Institute for Advanced Engineering, 17180, Yongin, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Dae Guen", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Advanced Engineering", 
          "id": "https://www.grid.ac/institutes/grid.486772.8", 
          "name": [
            "Center for Advanced Materials and Processing, Institute for Advanced Engineering, 17180, Yongin, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Im", 
        "givenName": "Byoungyong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Advanced Engineering", 
          "id": "https://www.grid.ac/institutes/grid.486772.8", 
          "name": [
            "Center for Advanced Materials and Processing, Institute for Advanced Engineering, 17180, Yongin, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chae", 
        "givenName": "Hong Jun", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0925-8388(95)01897-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009785641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10584580490892737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010591056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0248(91)90119-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021894838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0248(91)90119-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021894838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-999-0301-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023270857", 
          "https://doi.org/10.1007/s11661-999-0301-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-999-0301-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023270857", 
          "https://doi.org/10.1007/s11661-999-0301-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2013.04.089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025633064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/00035591011058192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029391588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep24585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030310194", 
          "https://doi.org/10.1038/srep24585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/amr.845.355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039978131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2007.12.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041298110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02653917", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041549957", 
          "https://doi.org/10.1007/bf02653917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02653917", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041549957", 
          "https://doi.org/10.1007/bf02653917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2010.02.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046202042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp810808h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056112702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp810808h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056112702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.277.5330.1221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062557814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature23894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091859364", 
          "https://doi.org/10.1038/nature23894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature23894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091859364", 
          "https://doi.org/10.1038/nature23894"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-14", 
    "datePublishedReg": "2019-02-14", 
    "description": "To fabricate a low-reflectance aluminum alloy, we have analyzed the changes in reflectance according to the morphology, components, and composition of the aluminum alloy. We find that the larger the particle size of the powder, the lower is the reflectance. This is attributed to the fact that the larger the particle size, the greater is the amount of light absorbed into the interparticle space in the powder. In addition, the reflectance decreases with increase in the Si and Mg contents, because of the lower reflectance of the strengthening phase formed in the alloy as compared to that of aluminum. In contrast, lanthanide addition causes an increase in the reflectance, which is attributed to an increase in the electrical conductivity of the alloy.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12540-019-00256-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136083", 
        "issn": [
          "1225-9438", 
          "2005-4149"
        ], 
        "name": "Metals and Materials International", 
        "type": "Periodical"
      }
    ], 
    "name": "Reflectance Characteristics of Al Alloys Containing Si, Mg, Cu, and Lanthanide (Nd, Sm, Gd) for 3D Printing", 
    "pagination": "1-10", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ae304bc4a180b4328136c309521bb2116fcd260941ff78471607fc3e7264136a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12540-019-00256-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112141941"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12540-019-00256-9", 
      "https://app.dimensions.ai/details/publication/pub.1112141941"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000337_0000000337/records_37546_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12540-019-00256-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12540-019-00256-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12540-019-00256-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12540-019-00256-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12540-019-00256-9'


 

This table displays all metadata directly associated to this object as RDF triples.

118 TRIPLES      21 PREDICATES      38 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12540-019-00256-9 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nab14ed01c2f1470dbb9df1c1b7bf24d8
4 schema:citation sg:pub.10.1007/bf02653917
5 sg:pub.10.1007/s11661-999-0301-8
6 sg:pub.10.1038/nature23894
7 sg:pub.10.1038/srep24585
8 https://doi.org/10.1016/0022-0248(91)90119-p
9 https://doi.org/10.1016/0925-8388(95)01897-2
10 https://doi.org/10.1016/j.matdes.2013.04.089
11 https://doi.org/10.1016/j.msea.2007.12.032
12 https://doi.org/10.1016/j.msea.2010.02.029
13 https://doi.org/10.1021/jp810808h
14 https://doi.org/10.1080/10584580490892737
15 https://doi.org/10.1108/00035591011058192
16 https://doi.org/10.1126/science.277.5330.1221
17 https://doi.org/10.4028/www.scientific.net/amr.845.355
18 schema:datePublished 2019-02-14
19 schema:datePublishedReg 2019-02-14
20 schema:description To fabricate a low-reflectance aluminum alloy, we have analyzed the changes in reflectance according to the morphology, components, and composition of the aluminum alloy. We find that the larger the particle size of the powder, the lower is the reflectance. This is attributed to the fact that the larger the particle size, the greater is the amount of light absorbed into the interparticle space in the powder. In addition, the reflectance decreases with increase in the Si and Mg contents, because of the lower reflectance of the strengthening phase formed in the alloy as compared to that of aluminum. In contrast, lanthanide addition causes an increase in the reflectance, which is attributed to an increase in the electrical conductivity of the alloy.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf sg:journal.1136083
25 schema:name Reflectance Characteristics of Al Alloys Containing Si, Mg, Cu, and Lanthanide (Nd, Sm, Gd) for 3D Printing
26 schema:pagination 1-10
27 schema:productId N2403331b65334b68b78b336ef054480e
28 N631903dfa92c477da528307ed1ce1b5d
29 Nfdc045810be042929b1dc071b5fe854c
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112141941
31 https://doi.org/10.1007/s12540-019-00256-9
32 schema:sdDatePublished 2019-04-11T09:06
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher Ncb1a53d894854a08814c43a5001d64f2
35 schema:url https://link.springer.com/10.1007%2Fs12540-019-00256-9
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N052fc035bd0f4ac5b3de51f8c1dcad5c rdf:first Nfa565b9e40e24496982e3a7c68fbf6d7
40 rdf:rest rdf:nil
41 N0deccabffcfa4bd28df9d456c8089873 schema:affiliation https://www.grid.ac/institutes/grid.486772.8
42 schema:familyName Im
43 schema:givenName Byoungyong
44 rdf:type schema:Person
45 N2403331b65334b68b78b336ef054480e schema:name doi
46 schema:value 10.1007/s12540-019-00256-9
47 rdf:type schema:PropertyValue
48 N2ec72432e29a490783806f84482d4b79 schema:affiliation https://www.grid.ac/institutes/grid.486772.8
49 schema:familyName Choi
50 schema:givenName Gwang Mook
51 rdf:type schema:Person
52 N631903dfa92c477da528307ed1ce1b5d schema:name readcube_id
53 schema:value ae304bc4a180b4328136c309521bb2116fcd260941ff78471607fc3e7264136a
54 rdf:type schema:PropertyValue
55 N75d7dc31c0c84083aea046a6602e0f50 rdf:first N942f4a6ef2b44ada909b6fc20685bcbe
56 rdf:rest Nf2b206a34b9d4f31aca962150e1e9ae5
57 N942f4a6ef2b44ada909b6fc20685bcbe schema:affiliation https://www.grid.ac/institutes/grid.486772.8
58 schema:familyName Kim
59 schema:givenName Dae Guen
60 rdf:type schema:Person
61 Nab14ed01c2f1470dbb9df1c1b7bf24d8 rdf:first N2ec72432e29a490783806f84482d4b79
62 rdf:rest N75d7dc31c0c84083aea046a6602e0f50
63 Ncb1a53d894854a08814c43a5001d64f2 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 Nf2b206a34b9d4f31aca962150e1e9ae5 rdf:first N0deccabffcfa4bd28df9d456c8089873
66 rdf:rest N052fc035bd0f4ac5b3de51f8c1dcad5c
67 Nfa565b9e40e24496982e3a7c68fbf6d7 schema:affiliation https://www.grid.ac/institutes/grid.486772.8
68 schema:familyName Chae
69 schema:givenName Hong Jun
70 rdf:type schema:Person
71 Nfdc045810be042929b1dc071b5fe854c schema:name dimensions_id
72 schema:value pub.1112141941
73 rdf:type schema:PropertyValue
74 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
75 schema:name Engineering
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
78 schema:name Materials Engineering
79 rdf:type schema:DefinedTerm
80 sg:journal.1136083 schema:issn 1225-9438
81 2005-4149
82 schema:name Metals and Materials International
83 rdf:type schema:Periodical
84 sg:pub.10.1007/bf02653917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041549957
85 https://doi.org/10.1007/bf02653917
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/s11661-999-0301-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023270857
88 https://doi.org/10.1007/s11661-999-0301-8
89 rdf:type schema:CreativeWork
90 sg:pub.10.1038/nature23894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091859364
91 https://doi.org/10.1038/nature23894
92 rdf:type schema:CreativeWork
93 sg:pub.10.1038/srep24585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030310194
94 https://doi.org/10.1038/srep24585
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/0022-0248(91)90119-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1021894838
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/0925-8388(95)01897-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009785641
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.matdes.2013.04.089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025633064
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/j.msea.2007.12.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041298110
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.msea.2010.02.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046202042
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1021/jp810808h schema:sameAs https://app.dimensions.ai/details/publication/pub.1056112702
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1080/10584580490892737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010591056
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1108/00035591011058192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029391588
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1126/science.277.5330.1221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062557814
113 rdf:type schema:CreativeWork
114 https://doi.org/10.4028/www.scientific.net/amr.845.355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039978131
115 rdf:type schema:CreativeWork
116 https://www.grid.ac/institutes/grid.486772.8 schema:alternateName Institute for Advanced Engineering
117 schema:name Center for Advanced Materials and Processing, Institute for Advanced Engineering, 17180, Yongin, Republic of Korea
118 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...