Hot Deformation Behavior and Dynamic Recrystallization Characteristics of 12Cr Ultra-Super-Critical Rotor Steel View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-08

AUTHORS

Y. Xu, J. S. Liu, Y. X. Jiao

ABSTRACT

In this paper, the constitutive model and dynamic recrystallization characteristics of 12Cr ultra-super-critical rotor steel were investigated quantitatively during hot deformation. A series of axisymmetric hot compression tests at temperatures from 900 to 1200 °C under strain rates of 0.001–1 s−1 were conducted on a Gleeble−1500D thermal simulator. Based on the experimental true stress–strain curves varying with temperature and strain rates, a complete constitutive model was established and all material parameters in the model could be expressed as a function of strain using a fifth order polynomial fit. The proposed model was verified so as to have the capability of accurately predicting the flow behaviour with an average absolute relative error of < 2.82%. Meanwhile, after hot deformation the microstructure was observed via electron backscatter diffraction technology. Then, the dependence of the characteristic parameters on the Zener–Hollomon parameter were confirmed. Furthermore, the kinetics equation of dynamic recrystallization was obtained, which included the flow stress calculated based on the evolution equation of the dislocation density during the work hardening-dynamic recovery stage. The result indicated that the predicted values for dynamic recrystallization volume fraction and flow stress were in line with the experimental values. More... »

PAGES

1-15

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12540-019-00253-y

DOI

http://dx.doi.org/10.1007/s12540-019-00253-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112023883


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Taiyuan University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.440655.6", 
          "name": [
            "College of Materials Science and Engineering, Taiyuan University of Science and Technology, 030024, Taiyuan, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Y.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Taiyuan University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.440655.6", 
          "name": [
            "College of Materials Science and Engineering, Taiyuan University of Science and Technology, 030024, Taiyuan, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "J. S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Taiyuan University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.440655.6", 
          "name": [
            "College of Materials Science and Engineering, Taiyuan University of Science and Technology, 030024, Taiyuan, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiao", 
        "givenName": "Y. X.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.4028/www.scientific.net/amr.753-755.913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001059089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2015.02.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002104648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02667368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004335484", 
          "https://doi.org/10.1007/bf02667368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02667368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004335484", 
          "https://doi.org/10.1007/bf02667368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12613-016-1349-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004964541", 
          "https://doi.org/10.1007/s12613-016-1349-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12613-016-1349-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004964541", 
          "https://doi.org/10.1007/s12613-016-1349-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-5093(02)00684-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006765438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-5093(02)00684-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006765438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0093-6413(02)00354-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007342397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0093-6413(02)00354-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007342397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0924-0136(95)01902-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007385622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-5093(00)00733-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009004360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0749-6419(95)00041-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011235775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2012.09.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012362513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/mst.1996.12.7.552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013417052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11665-013-0815-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014273926", 
          "https://doi.org/10.1007/s11665-013-0815-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01729243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017450506", 
          "https://doi.org/10.1007/bf01729243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2006.05.159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017867354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matchar.2014.12.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018946248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02664902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020816054", 
          "https://doi.org/10.1007/bf02664902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02664902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020816054", 
          "https://doi.org/10.1007/bf02664902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/mst.1997.13.3.210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022111707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2014.07.082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022238186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2008.10.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022702680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-5093(94)09714-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026581120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2016.06.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027499695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2016.06.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027499695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2016.02.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028358952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2014.09.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028873037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2006.05.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029334555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-009-9799-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030950910", 
          "https://doi.org/10.1007/s11661-009-9799-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-009-9799-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030950910", 
          "https://doi.org/10.1007/s11661-009-9799-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00084433.2016.1273567", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031776523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2012.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031931057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2012.02.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032558481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2007.06.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032605726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2009.02.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037640443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/1359-6454(95)00146-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039354774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/cmq.1990.29.2.147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040800364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2007.11.113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045067328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-011-5297-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046990265", 
          "https://doi.org/10.1007/s10853-011-5297-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01418618908213873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047270659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/mtlr.1969.14.1.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048977812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2015/848126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050784055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.commatsci.2014.10.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051088317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijpvp.2007.06.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051106034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2015.01.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053151615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1707363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057776265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/095066072790137765", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064103463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12540-017-6538-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084035508", 
          "https://doi.org/10.1007/s12540-017-6538-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12540-017-6538-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084035508", 
          "https://doi.org/10.1007/s12540-017-6538-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12540-017-6391-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091500063", 
          "https://doi.org/10.1007/s12540-017-6391-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.vacuum.2017.09.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091566580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.vacuum.2017.10.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092190783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2018.02.064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101112798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.vacuum.2018.06.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104594680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12540-018-00224-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110281717", 
          "https://doi.org/10.1007/s12540-018-00224-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-08", 
    "datePublishedReg": "2019-02-08", 
    "description": "In this paper, the constitutive model and dynamic recrystallization characteristics of 12Cr ultra-super-critical rotor steel were investigated quantitatively during hot deformation. A series of axisymmetric hot compression tests at temperatures from 900 to 1200 \u00b0C under strain rates of 0.001\u20131 s\u22121 were conducted on a Gleeble\u22121500D thermal simulator. Based on the experimental true stress\u2013strain curves varying with temperature and strain rates, a complete constitutive model was established and all material parameters in the model could be expressed as a function of strain using a fifth order polynomial fit. The proposed model was verified so as to have the capability of accurately predicting the flow behaviour with an average absolute relative error of < 2.82%. Meanwhile, after hot deformation the microstructure was observed via electron backscatter diffraction technology. Then, the dependence of the characteristic parameters on the Zener\u2013Hollomon parameter were confirmed. Furthermore, the kinetics equation of dynamic recrystallization was obtained, which included the flow stress calculated based on the evolution equation of the dislocation density during the work hardening-dynamic recovery stage. The result indicated that the predicted values for dynamic recrystallization volume fraction and flow stress were in line with the experimental values.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12540-019-00253-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136083", 
        "issn": [
          "1225-9438", 
          "2005-4149"
        ], 
        "name": "Metals and Materials International", 
        "type": "Periodical"
      }
    ], 
    "name": "Hot Deformation Behavior and Dynamic Recrystallization Characteristics of 12Cr Ultra-Super-Critical Rotor Steel", 
    "pagination": "1-15", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a466e705530e1fd5b519efcf7ae0b242efff59e875ab2c2e92f142badf95b003"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12540-019-00253-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112023883"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12540-019-00253-y", 
      "https://app.dimensions.ai/details/publication/pub.1112023883"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000332_0000000332/records_121936_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12540-019-00253-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12540-019-00253-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12540-019-00253-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12540-019-00253-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12540-019-00253-y'


 

This table displays all metadata directly associated to this object as RDF triples.

223 TRIPLES      21 PREDICATES      73 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12540-019-00253-y schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N110725aa8ee44d919b754c575a165284
4 schema:citation sg:pub.10.1007/bf01729243
5 sg:pub.10.1007/bf02664902
6 sg:pub.10.1007/bf02667368
7 sg:pub.10.1007/s10853-011-5297-y
8 sg:pub.10.1007/s11661-009-9799-z
9 sg:pub.10.1007/s11665-013-0815-5
10 sg:pub.10.1007/s12540-017-6391-8
11 sg:pub.10.1007/s12540-017-6538-7
12 sg:pub.10.1007/s12540-018-00224-9
13 sg:pub.10.1007/s12613-016-1349-2
14 https://doi.org/10.1016/0921-5093(94)09714-3
15 https://doi.org/10.1016/0924-0136(95)01902-2
16 https://doi.org/10.1016/1359-6454(95)00146-7
17 https://doi.org/10.1016/j.actamat.2009.02.033
18 https://doi.org/10.1016/j.actamat.2015.01.027
19 https://doi.org/10.1016/j.actamat.2016.06.023
20 https://doi.org/10.1016/j.commatsci.2014.10.044
21 https://doi.org/10.1016/j.ijpvp.2007.06.010
22 https://doi.org/10.1016/j.jmatprotec.2007.11.113
23 https://doi.org/10.1016/j.jmatprotec.2008.10.036
24 https://doi.org/10.1016/j.matchar.2014.12.028
25 https://doi.org/10.1016/j.matdes.2012.08.004
26 https://doi.org/10.1016/j.matdes.2015.02.024
27 https://doi.org/10.1016/j.matdes.2016.02.052
28 https://doi.org/10.1016/j.msea.2006.05.159
29 https://doi.org/10.1016/j.msea.2012.02.035
30 https://doi.org/10.1016/j.msea.2012.09.053
31 https://doi.org/10.1016/j.msea.2014.07.082
32 https://doi.org/10.1016/j.msea.2014.09.009
33 https://doi.org/10.1016/j.msea.2018.02.064
34 https://doi.org/10.1016/j.scriptamat.2006.05.015
35 https://doi.org/10.1016/j.scriptamat.2007.06.023
36 https://doi.org/10.1016/j.vacuum.2017.09.017
37 https://doi.org/10.1016/j.vacuum.2017.10.017
38 https://doi.org/10.1016/j.vacuum.2018.06.022
39 https://doi.org/10.1016/s0093-6413(02)00354-3
40 https://doi.org/10.1016/s0749-6419(95)00041-0
41 https://doi.org/10.1016/s0921-5093(00)00733-4
42 https://doi.org/10.1016/s0921-5093(02)00684-6
43 https://doi.org/10.1063/1.1707363
44 https://doi.org/10.1080/00084433.2016.1273567
45 https://doi.org/10.1080/01418618908213873
46 https://doi.org/10.1155/2015/848126
47 https://doi.org/10.1179/095066072790137765
48 https://doi.org/10.1179/cmq.1990.29.2.147
49 https://doi.org/10.1179/mst.1996.12.7.552
50 https://doi.org/10.1179/mst.1997.13.3.210
51 https://doi.org/10.1179/mtlr.1969.14.1.1
52 https://doi.org/10.4028/www.scientific.net/amr.753-755.913
53 schema:datePublished 2019-02-08
54 schema:datePublishedReg 2019-02-08
55 schema:description In this paper, the constitutive model and dynamic recrystallization characteristics of 12Cr ultra-super-critical rotor steel were investigated quantitatively during hot deformation. A series of axisymmetric hot compression tests at temperatures from 900 to 1200 °C under strain rates of 0.001–1 s−1 were conducted on a Gleeble−1500D thermal simulator. Based on the experimental true stress–strain curves varying with temperature and strain rates, a complete constitutive model was established and all material parameters in the model could be expressed as a function of strain using a fifth order polynomial fit. The proposed model was verified so as to have the capability of accurately predicting the flow behaviour with an average absolute relative error of < 2.82%. Meanwhile, after hot deformation the microstructure was observed via electron backscatter diffraction technology. Then, the dependence of the characteristic parameters on the Zener–Hollomon parameter were confirmed. Furthermore, the kinetics equation of dynamic recrystallization was obtained, which included the flow stress calculated based on the evolution equation of the dislocation density during the work hardening-dynamic recovery stage. The result indicated that the predicted values for dynamic recrystallization volume fraction and flow stress were in line with the experimental values.
56 schema:genre research_article
57 schema:inLanguage en
58 schema:isAccessibleForFree false
59 schema:isPartOf sg:journal.1136083
60 schema:name Hot Deformation Behavior and Dynamic Recrystallization Characteristics of 12Cr Ultra-Super-Critical Rotor Steel
61 schema:pagination 1-15
62 schema:productId N1d80647f46624fcd9b812d724b56d140
63 N5b9e0133537c4e159b8f70ba1fe58e11
64 Nd9c596f8405e45aa95364d7745a1455f
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112023883
66 https://doi.org/10.1007/s12540-019-00253-y
67 schema:sdDatePublished 2019-04-11T09:03
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher N9ab9d4a690194d8da7a464dad5581b8e
70 schema:url https://link.springer.com/10.1007%2Fs12540-019-00253-y
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N110725aa8ee44d919b754c575a165284 rdf:first N442cbd01d0414c0a8452af1fb395d184
75 rdf:rest N78b419dbd5b04803a2294612ac726d1e
76 N1d80647f46624fcd9b812d724b56d140 schema:name doi
77 schema:value 10.1007/s12540-019-00253-y
78 rdf:type schema:PropertyValue
79 N442cbd01d0414c0a8452af1fb395d184 schema:affiliation https://www.grid.ac/institutes/grid.440655.6
80 schema:familyName Xu
81 schema:givenName Y.
82 rdf:type schema:Person
83 N5b9e0133537c4e159b8f70ba1fe58e11 schema:name dimensions_id
84 schema:value pub.1112023883
85 rdf:type schema:PropertyValue
86 N6193e87ecba24dd6848e5bd84390ac61 schema:affiliation https://www.grid.ac/institutes/grid.440655.6
87 schema:familyName Liu
88 schema:givenName J. S.
89 rdf:type schema:Person
90 N78b419dbd5b04803a2294612ac726d1e rdf:first N6193e87ecba24dd6848e5bd84390ac61
91 rdf:rest N9b37f83ad9a542d6a1dceb03463c71d0
92 N7cccf72a251a49b19dfc406db106d6a0 schema:affiliation https://www.grid.ac/institutes/grid.440655.6
93 schema:familyName Jiao
94 schema:givenName Y. X.
95 rdf:type schema:Person
96 N9ab9d4a690194d8da7a464dad5581b8e schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 N9b37f83ad9a542d6a1dceb03463c71d0 rdf:first N7cccf72a251a49b19dfc406db106d6a0
99 rdf:rest rdf:nil
100 Nd9c596f8405e45aa95364d7745a1455f schema:name readcube_id
101 schema:value a466e705530e1fd5b519efcf7ae0b242efff59e875ab2c2e92f142badf95b003
102 rdf:type schema:PropertyValue
103 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
104 schema:name Engineering
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
107 schema:name Materials Engineering
108 rdf:type schema:DefinedTerm
109 sg:journal.1136083 schema:issn 1225-9438
110 2005-4149
111 schema:name Metals and Materials International
112 rdf:type schema:Periodical
113 sg:pub.10.1007/bf01729243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017450506
114 https://doi.org/10.1007/bf01729243
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/bf02664902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020816054
117 https://doi.org/10.1007/bf02664902
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/bf02667368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004335484
120 https://doi.org/10.1007/bf02667368
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s10853-011-5297-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1046990265
123 https://doi.org/10.1007/s10853-011-5297-y
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s11661-009-9799-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1030950910
126 https://doi.org/10.1007/s11661-009-9799-z
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s11665-013-0815-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014273926
129 https://doi.org/10.1007/s11665-013-0815-5
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s12540-017-6391-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091500063
132 https://doi.org/10.1007/s12540-017-6391-8
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s12540-017-6538-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084035508
135 https://doi.org/10.1007/s12540-017-6538-7
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s12540-018-00224-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110281717
138 https://doi.org/10.1007/s12540-018-00224-9
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s12613-016-1349-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004964541
141 https://doi.org/10.1007/s12613-016-1349-2
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/0921-5093(94)09714-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026581120
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/0924-0136(95)01902-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007385622
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/1359-6454(95)00146-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039354774
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.actamat.2009.02.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037640443
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.actamat.2015.01.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053151615
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.actamat.2016.06.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027499695
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.commatsci.2014.10.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051088317
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.ijpvp.2007.06.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051106034
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.jmatprotec.2007.11.113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045067328
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.jmatprotec.2008.10.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022702680
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.matchar.2014.12.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018946248
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.matdes.2012.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031931057
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.matdes.2015.02.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002104648
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.matdes.2016.02.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028358952
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.msea.2006.05.159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017867354
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.msea.2012.02.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032558481
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.msea.2012.09.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012362513
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.msea.2014.07.082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022238186
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.msea.2014.09.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028873037
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.msea.2018.02.064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101112798
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.scriptamat.2006.05.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029334555
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.scriptamat.2007.06.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032605726
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.vacuum.2017.09.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091566580
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.vacuum.2017.10.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092190783
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.vacuum.2018.06.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104594680
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/s0093-6413(02)00354-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007342397
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/s0749-6419(95)00041-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011235775
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/s0921-5093(00)00733-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009004360
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/s0921-5093(02)00684-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006765438
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1063/1.1707363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057776265
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1080/00084433.2016.1273567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031776523
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1080/01418618908213873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047270659
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1155/2015/848126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050784055
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1179/095066072790137765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064103463
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1179/cmq.1990.29.2.147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040800364
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1179/mst.1996.12.7.552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013417052
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1179/mst.1997.13.3.210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022111707
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1179/mtlr.1969.14.1.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048977812
218 rdf:type schema:CreativeWork
219 https://doi.org/10.4028/www.scientific.net/amr.753-755.913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001059089
220 rdf:type schema:CreativeWork
221 https://www.grid.ac/institutes/grid.440655.6 schema:alternateName Taiyuan University of Science and Technology
222 schema:name College of Materials Science and Engineering, Taiyuan University of Science and Technology, 030024, Taiyuan, People’s Republic of China
223 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...