Rapid Consolidation Mechanism of Titanium Aluminide Solid Compact via Electric Discharging Through Elemental Ti and Al Powder Mixture View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01-18

AUTHORS

H. S. Jang, C. J. Van Tyne, W. H. Lee

ABSTRACT

Elemental Ti and Al powders were milled and mixed as starting materials for the synthesis of titanium aluminide solid compacts by using the electric discharge sintering (EDS) technique. The polycrystalline compact with near full-density (> 99.6%) and the main phase of Ti3Al was produced in 170 μs by the EDS. In the early stage of electric discharging, the generated heat at the interface of metal and oxide film created an explosive force, inducing a dielectric breakdown of inherent oxide film. Once the oxide film was removed and the metals were melt, the formation of necks at the clean contact points occurred and the inter-diffusion between Ti and Al in liquid phase was initiated at the metallic contact areas with sequent alloying into an amorphous Ti3Al. During the full alloying and substantial neck growth, the heat dissipated through the mold, causing the crystallization of Ti3Al. During the EDS, pinch pressure (24–68 MPa) was also generated, which can densify the EDS compact. The fine microstructure, higher density, and greater hardness of EDS compact were results of the shorter exposure time to a high temperature and the generated pinch pressure, causing a higher densification and constrained grain growth, compared to conventional powder metallurgy methods. More... »

PAGES

1-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12540-019-00238-x

DOI

http://dx.doi.org/10.1007/s12540-019-00238-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111511129


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sejong University", 
          "id": "https://www.grid.ac/institutes/grid.263333.4", 
          "name": [
            "Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 05006, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jang", 
        "givenName": "H. S.", 
        "id": "sg:person.015753731571.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015753731571.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colorado School of Mines", 
          "id": "https://www.grid.ac/institutes/grid.254549.b", 
          "name": [
            "Department of Metallurgical and Materials Engineering, Colorado School of Mines, 80401, Golden, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Van Tyne", 
        "givenName": "C. J.", 
        "id": "sg:person.07741770136.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07741770136.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sejong University", 
          "id": "https://www.grid.ac/institutes/grid.263333.4", 
          "name": [
            "Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 05006, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "W. H.", 
        "id": "sg:person.015517376465.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015517376465.39"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/adem.201300409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002205238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmst.2014.08.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003825316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijfatigue.2009.11.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004656087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.materresbull.2012.04.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006901697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5tc03214h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011400572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1006653503849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012068607", 
          "https://doi.org/10.1023/a:1006653503849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-011-5886-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017710960", 
          "https://doi.org/10.1007/s10853-011-5886-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.intermet.2013.01.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018849144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7403(76)90073-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022835447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7403(76)90073-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022835447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2015.11.105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024364351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2005.05.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024782623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12540-016-5647-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028484818", 
          "https://doi.org/10.1007/s12540-016-5647-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12540-016-5647-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028484818", 
          "https://doi.org/10.1007/s12540-016-5647-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/1743284714y.0000000666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039509161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0966-9795(96)00026-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043640392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2015.04.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044738667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmst.2014.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044914104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12540-017-6572-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085120595", 
          "https://doi.org/10.1007/s12540-017-6572-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12540-017-6572-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085120595", 
          "https://doi.org/10.1007/s12540-017-6572-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2017.10.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092179308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2017.11.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092668135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2017.12.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099680273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.intermet.2017.12.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099907618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2017.12.054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100089692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12540-017-7307-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100202738", 
          "https://doi.org/10.1007/s12540-017-7307-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-20799-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100726974", 
          "https://doi.org/10.1038/s41598-018-20799-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12540-018-0040-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101082915", 
          "https://doi.org/10.1007/s12540-018-0040-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.intermet.2018.03.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101893968"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01-18", 
    "datePublishedReg": "2019-01-18", 
    "description": "Elemental Ti and Al powders were milled and mixed as starting materials for the synthesis of titanium aluminide solid compacts by using the electric discharge sintering (EDS) technique. The polycrystalline compact with near full-density (> 99.6%) and the main phase of Ti3Al was produced in 170 \u03bcs by the EDS. In the early stage of electric discharging, the generated heat at the interface of metal and oxide film created an explosive force, inducing a dielectric breakdown of inherent oxide film. Once the oxide film was removed and the metals were melt, the formation of necks at the clean contact points occurred and the inter-diffusion between Ti and Al in liquid phase was initiated at the metallic contact areas with sequent alloying into an amorphous Ti3Al. During the full alloying and substantial neck growth, the heat dissipated through the mold, causing the crystallization of Ti3Al. During the EDS, pinch pressure (24\u201368 MPa) was also generated, which can densify the EDS compact. The fine microstructure, higher density, and greater hardness of EDS compact were results of the shorter exposure time to a high temperature and the generated pinch pressure, causing a higher densification and constrained grain growth, compared to conventional powder metallurgy methods.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12540-019-00238-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136083", 
        "issn": [
          "1225-9438", 
          "2005-4149"
        ], 
        "name": "Metals and Materials International", 
        "type": "Periodical"
      }
    ], 
    "name": "Rapid Consolidation Mechanism of Titanium Aluminide Solid Compact via Electric Discharging Through Elemental Ti and Al Powder Mixture", 
    "pagination": "1-9", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "96e59bbc3abb5d9e67325c3dd7e170c4bd1796e8b5a9936a468de4614e97be11"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12540-019-00238-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111511129"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12540-019-00238-x", 
      "https://app.dimensions.ai/details/publication/pub.1111511129"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000321_0000000321/records_74928_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12540-019-00238-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12540-019-00238-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12540-019-00238-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12540-019-00238-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12540-019-00238-x'


 

This table displays all metadata directly associated to this object as RDF triples.

157 TRIPLES      21 PREDICATES      50 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12540-019-00238-x schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Ndb0a564e64684a4ab134590f27d4cfba
4 schema:citation sg:pub.10.1007/s10853-011-5886-9
5 sg:pub.10.1007/s12540-016-5647-z
6 sg:pub.10.1007/s12540-017-6572-5
7 sg:pub.10.1007/s12540-017-7307-3
8 sg:pub.10.1007/s12540-018-0040-8
9 sg:pub.10.1023/a:1006653503849
10 sg:pub.10.1038/s41598-018-20799-y
11 https://doi.org/10.1002/adem.201300409
12 https://doi.org/10.1016/0020-7403(76)90073-4
13 https://doi.org/10.1016/0966-9795(96)00026-x
14 https://doi.org/10.1016/j.ijfatigue.2009.11.008
15 https://doi.org/10.1016/j.intermet.2013.01.006
16 https://doi.org/10.1016/j.intermet.2017.12.011
17 https://doi.org/10.1016/j.intermet.2018.03.011
18 https://doi.org/10.1016/j.jallcom.2015.11.105
19 https://doi.org/10.1016/j.jallcom.2017.12.054
20 https://doi.org/10.1016/j.jmst.2014.03.003
21 https://doi.org/10.1016/j.jmst.2014.08.008
22 https://doi.org/10.1016/j.materresbull.2012.04.019
23 https://doi.org/10.1016/j.msea.2015.04.025
24 https://doi.org/10.1016/j.msea.2017.10.010
25 https://doi.org/10.1016/j.msea.2017.11.041
26 https://doi.org/10.1016/j.msea.2017.12.065
27 https://doi.org/10.1016/j.scriptamat.2005.05.042
28 https://doi.org/10.1039/c5tc03214h
29 https://doi.org/10.1179/1743284714y.0000000666
30 schema:datePublished 2019-01-18
31 schema:datePublishedReg 2019-01-18
32 schema:description Elemental Ti and Al powders were milled and mixed as starting materials for the synthesis of titanium aluminide solid compacts by using the electric discharge sintering (EDS) technique. The polycrystalline compact with near full-density (> 99.6%) and the main phase of Ti3Al was produced in 170 μs by the EDS. In the early stage of electric discharging, the generated heat at the interface of metal and oxide film created an explosive force, inducing a dielectric breakdown of inherent oxide film. Once the oxide film was removed and the metals were melt, the formation of necks at the clean contact points occurred and the inter-diffusion between Ti and Al in liquid phase was initiated at the metallic contact areas with sequent alloying into an amorphous Ti3Al. During the full alloying and substantial neck growth, the heat dissipated through the mold, causing the crystallization of Ti3Al. During the EDS, pinch pressure (24–68 MPa) was also generated, which can densify the EDS compact. The fine microstructure, higher density, and greater hardness of EDS compact were results of the shorter exposure time to a high temperature and the generated pinch pressure, causing a higher densification and constrained grain growth, compared to conventional powder metallurgy methods.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf sg:journal.1136083
37 schema:name Rapid Consolidation Mechanism of Titanium Aluminide Solid Compact via Electric Discharging Through Elemental Ti and Al Powder Mixture
38 schema:pagination 1-9
39 schema:productId N198a6855b6294a50a5eaf916a98fbed1
40 N31101082830f4310afbf3e40fa460963
41 N43206187835a4fff8e1d032301d05ac5
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111511129
43 https://doi.org/10.1007/s12540-019-00238-x
44 schema:sdDatePublished 2019-04-11T08:42
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N00f21379097246ffae8ef999a4f7bc59
47 schema:url https://link.springer.com/10.1007%2Fs12540-019-00238-x
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N00f21379097246ffae8ef999a4f7bc59 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N198a6855b6294a50a5eaf916a98fbed1 schema:name doi
54 schema:value 10.1007/s12540-019-00238-x
55 rdf:type schema:PropertyValue
56 N1e597f8568a9423daacc9c9be084ae35 rdf:first sg:person.015517376465.39
57 rdf:rest rdf:nil
58 N230d31281ff046a5ae4c3f501fba334c rdf:first sg:person.07741770136.12
59 rdf:rest N1e597f8568a9423daacc9c9be084ae35
60 N31101082830f4310afbf3e40fa460963 schema:name readcube_id
61 schema:value 96e59bbc3abb5d9e67325c3dd7e170c4bd1796e8b5a9936a468de4614e97be11
62 rdf:type schema:PropertyValue
63 N43206187835a4fff8e1d032301d05ac5 schema:name dimensions_id
64 schema:value pub.1111511129
65 rdf:type schema:PropertyValue
66 Ndb0a564e64684a4ab134590f27d4cfba rdf:first sg:person.015753731571.29
67 rdf:rest N230d31281ff046a5ae4c3f501fba334c
68 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
69 schema:name Engineering
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
72 schema:name Materials Engineering
73 rdf:type schema:DefinedTerm
74 sg:journal.1136083 schema:issn 1225-9438
75 2005-4149
76 schema:name Metals and Materials International
77 rdf:type schema:Periodical
78 sg:person.015517376465.39 schema:affiliation https://www.grid.ac/institutes/grid.263333.4
79 schema:familyName Lee
80 schema:givenName W. H.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015517376465.39
82 rdf:type schema:Person
83 sg:person.015753731571.29 schema:affiliation https://www.grid.ac/institutes/grid.263333.4
84 schema:familyName Jang
85 schema:givenName H. S.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015753731571.29
87 rdf:type schema:Person
88 sg:person.07741770136.12 schema:affiliation https://www.grid.ac/institutes/grid.254549.b
89 schema:familyName Van Tyne
90 schema:givenName C. J.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07741770136.12
92 rdf:type schema:Person
93 sg:pub.10.1007/s10853-011-5886-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017710960
94 https://doi.org/10.1007/s10853-011-5886-9
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/s12540-016-5647-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1028484818
97 https://doi.org/10.1007/s12540-016-5647-z
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/s12540-017-6572-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085120595
100 https://doi.org/10.1007/s12540-017-6572-5
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s12540-017-7307-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100202738
103 https://doi.org/10.1007/s12540-017-7307-3
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s12540-018-0040-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101082915
106 https://doi.org/10.1007/s12540-018-0040-8
107 rdf:type schema:CreativeWork
108 sg:pub.10.1023/a:1006653503849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012068607
109 https://doi.org/10.1023/a:1006653503849
110 rdf:type schema:CreativeWork
111 sg:pub.10.1038/s41598-018-20799-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1100726974
112 https://doi.org/10.1038/s41598-018-20799-y
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1002/adem.201300409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002205238
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/0020-7403(76)90073-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022835447
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/0966-9795(96)00026-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043640392
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.ijfatigue.2009.11.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004656087
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.intermet.2013.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018849144
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.intermet.2017.12.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099907618
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.intermet.2018.03.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101893968
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.jallcom.2015.11.105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024364351
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.jallcom.2017.12.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100089692
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.jmst.2014.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044914104
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.jmst.2014.08.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003825316
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.materresbull.2012.04.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006901697
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.msea.2015.04.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044738667
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.msea.2017.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092179308
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.msea.2017.11.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092668135
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.msea.2017.12.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099680273
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.scriptamat.2005.05.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024782623
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1039/c5tc03214h schema:sameAs https://app.dimensions.ai/details/publication/pub.1011400572
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1179/1743284714y.0000000666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039509161
151 rdf:type schema:CreativeWork
152 https://www.grid.ac/institutes/grid.254549.b schema:alternateName Colorado School of Mines
153 schema:name Department of Metallurgical and Materials Engineering, Colorado School of Mines, 80401, Golden, USA
154 rdf:type schema:Organization
155 https://www.grid.ac/institutes/grid.263333.4 schema:alternateName Sejong University
156 schema:name Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 05006, Seoul, Korea
157 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...