Characterization of Hot Deformation Behavior and Processing Maps of Ti–19Al–22Mo Alloy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01-28

AUTHORS

P. L. Narayana, Cheng-Lin Li, Jae-Keun Hong, Seong-Woo Choi, Chan Hee Park, Seong-Woong Kim, Seung Eon Kim, N. S. Reddy, Jong-Taek Yeom

ABSTRACT

The isothermal compression tests were carried out to study the hot deformation behavior and microstructure evolution of Ti–19Al–22Mo alloy. The samples were deformed in the temperature range from 1100 to 1250 °C with an interval of 50 °C, strain rate ranging from 0.01 to 1 s−1 and the height reduction of 50% using Gleeble-3800 thermal–mechanical simulator. By using this experimental data an artificial neural network (ANN) model was developed and evaluated with unseen data. Further, the developed ANN model was used to predict flow stress correction from adiabatic heating at finer intervals of strain rates and temperatures. The predicted isothermal flow stress values were utilized to construct processing maps for Ti–19Al–22Mo alloy at true strain of 0.4 and 0.6. The maximum efficiency was noticed at 1100 °C with the strain rate of 0.01 s−1 associated with dynamic recrystallization and dynamic recovery. The deformation conditions of the instability domains in processing map showed wedge cracking and flow localization. Using the processing maps safe working parameters for hot deformation of Ti–19Al–22Mo alloy was identified. More... »

PAGES

1-9

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12540-018-00237-4

DOI

http://dx.doi.org/10.1007/s12540-018-00237-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111748292


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Gyeongsang National University", 
          "id": "https://www.grid.ac/institutes/grid.256681.e", 
          "name": [
            "Advanced Metals Division, Korea Institute of Materials Science, 51508, Changwon, Republic of Korea", 
            "Engineering Research Institute, School of Materials Science and Engineering, Gyeongsang National University, 52828, Jinju, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Narayana", 
        "givenName": "P. L.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Institute of Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.410902.e", 
          "name": [
            "Advanced Metals Division, Korea Institute of Materials Science, 51508, Changwon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Cheng-Lin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Institute of Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.410902.e", 
          "name": [
            "Advanced Metals Division, Korea Institute of Materials Science, 51508, Changwon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hong", 
        "givenName": "Jae-Keun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Institute of Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.410902.e", 
          "name": [
            "Advanced Metals Division, Korea Institute of Materials Science, 51508, Changwon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Seong-Woo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Institute of Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.410902.e", 
          "name": [
            "Advanced Metals Division, Korea Institute of Materials Science, 51508, Changwon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Chan Hee", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Institute of Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.410902.e", 
          "name": [
            "Advanced Metals Division, Korea Institute of Materials Science, 51508, Changwon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Seong-Woong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Institute of Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.410902.e", 
          "name": [
            "Advanced Metals Division, Korea Institute of Materials Science, 51508, Changwon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Seung Eon", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Gyeongsang National University", 
          "id": "https://www.grid.ac/institutes/grid.256681.e", 
          "name": [
            "Engineering Research Institute, School of Materials Science and Engineering, Gyeongsang National University, 52828, Jinju, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reddy", 
        "givenName": "N. S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Institute of Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.410902.e", 
          "name": [
            "Advanced Metals Division, Korea Institute of Materials Science, 51508, Changwon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yeom", 
        "givenName": "Jong-Taek", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s1003-6326(16)64234-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000443345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2007.02.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001960599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2355/isijinternational.39.966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003726040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00542809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006040658", 
          "https://doi.org/10.1007/bf00542809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00542809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006040658", 
          "https://doi.org/10.1007/bf00542809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jnucmat.2014.01.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007029780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.intermet.2011.08.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007111218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.intermet.2009.07.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007747410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2016.11.211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008221411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1875-5372(10)60119-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008471206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2013.03.082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011726924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1003-6326(11)61208-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022025140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/imr.1998.43.6.243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022622812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1875-5372(14)60089-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023086405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.commatsci.2015.05.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023465798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14786430701654378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023500995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2320/matertrans1989.35.787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024001573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2008.12.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034952997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmst.2013.07.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038926167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02403806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042496049", 
          "https://doi.org/10.1007/bf02403806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02403806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042496049", 
          "https://doi.org/10.1007/bf02403806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.paerosci.2012.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042754218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02914711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043310743", 
          "https://doi.org/10.1007/bf02914711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02914711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043310743", 
          "https://doi.org/10.1007/bf02914711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-5093(00)00741-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047234411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-5093(92)90046-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050774987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-5093(92)90046-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050774987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/amm.20-23.1211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071911740"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01-28", 
    "datePublishedReg": "2019-01-28", 
    "description": "The isothermal compression tests were carried out to study the hot deformation behavior and microstructure evolution of Ti\u201319Al\u201322Mo alloy. The samples were deformed in the temperature range from 1100 to 1250 \u00b0C with an interval of 50 \u00b0C, strain rate ranging from 0.01 to 1 s\u22121 and the height reduction of 50% using Gleeble-3800 thermal\u2013mechanical simulator. By using this experimental data an artificial neural network (ANN) model was developed and evaluated with unseen data. Further, the developed ANN model was used to predict flow stress correction from adiabatic heating at finer intervals of strain rates and temperatures. The predicted isothermal flow stress values were utilized to construct processing maps for Ti\u201319Al\u201322Mo alloy at true strain of 0.4 and 0.6. The maximum efficiency was noticed at 1100 \u00b0C with the strain rate of 0.01 s\u22121 associated with dynamic recrystallization and dynamic recovery. The deformation conditions of the instability domains in processing map showed wedge cracking and flow localization. Using the processing maps safe working parameters for hot deformation of Ti\u201319Al\u201322Mo alloy was identified.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12540-018-00237-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136083", 
        "issn": [
          "1225-9438", 
          "2005-4149"
        ], 
        "name": "Metals and Materials International", 
        "type": "Periodical"
      }
    ], 
    "name": "Characterization of Hot Deformation Behavior and Processing Maps of Ti\u201319Al\u201322Mo Alloy", 
    "pagination": "1-9", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0d3393bd7603580fd1e7b2767e11a236163bf234b7c3b8f925d79a6acbc65af9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12540-018-00237-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111748292"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12540-018-00237-4", 
      "https://app.dimensions.ai/details/publication/pub.1111748292"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000326_0000000326/records_68463_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12540-018-00237-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12540-018-00237-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12540-018-00237-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12540-018-00237-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12540-018-00237-4'


 

This table displays all metadata directly associated to this object as RDF triples.

181 TRIPLES      21 PREDICATES      48 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12540-018-00237-4 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Ne07d8bb120dc4332a4e46ad0dc73e192
4 schema:citation sg:pub.10.1007/bf00542809
5 sg:pub.10.1007/bf02403806
6 sg:pub.10.1007/bf02914711
7 https://doi.org/10.1016/0921-5093(92)90046-4
8 https://doi.org/10.1016/j.commatsci.2015.05.026
9 https://doi.org/10.1016/j.intermet.2009.07.015
10 https://doi.org/10.1016/j.intermet.2011.08.027
11 https://doi.org/10.1016/j.jallcom.2016.11.211
12 https://doi.org/10.1016/j.jmst.2013.07.008
13 https://doi.org/10.1016/j.jnucmat.2014.01.029
14 https://doi.org/10.1016/j.matdes.2007.02.009
15 https://doi.org/10.1016/j.matdes.2013.03.082
16 https://doi.org/10.1016/j.msea.2008.12.022
17 https://doi.org/10.1016/j.paerosci.2012.04.001
18 https://doi.org/10.1016/s0921-5093(00)00741-3
19 https://doi.org/10.1016/s1003-6326(11)61208-9
20 https://doi.org/10.1016/s1003-6326(16)64234-6
21 https://doi.org/10.1016/s1875-5372(10)60119-1
22 https://doi.org/10.1016/s1875-5372(14)60089-8
23 https://doi.org/10.1080/14786430701654378
24 https://doi.org/10.1179/imr.1998.43.6.243
25 https://doi.org/10.2320/matertrans1989.35.787
26 https://doi.org/10.2355/isijinternational.39.966
27 https://doi.org/10.4028/www.scientific.net/amm.20-23.1211
28 schema:datePublished 2019-01-28
29 schema:datePublishedReg 2019-01-28
30 schema:description The isothermal compression tests were carried out to study the hot deformation behavior and microstructure evolution of Ti–19Al–22Mo alloy. The samples were deformed in the temperature range from 1100 to 1250 °C with an interval of 50 °C, strain rate ranging from 0.01 to 1 s−1 and the height reduction of 50% using Gleeble-3800 thermal–mechanical simulator. By using this experimental data an artificial neural network (ANN) model was developed and evaluated with unseen data. Further, the developed ANN model was used to predict flow stress correction from adiabatic heating at finer intervals of strain rates and temperatures. The predicted isothermal flow stress values were utilized to construct processing maps for Ti–19Al–22Mo alloy at true strain of 0.4 and 0.6. The maximum efficiency was noticed at 1100 °C with the strain rate of 0.01 s−1 associated with dynamic recrystallization and dynamic recovery. The deformation conditions of the instability domains in processing map showed wedge cracking and flow localization. Using the processing maps safe working parameters for hot deformation of Ti–19Al–22Mo alloy was identified.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf sg:journal.1136083
35 schema:name Characterization of Hot Deformation Behavior and Processing Maps of Ti–19Al–22Mo Alloy
36 schema:pagination 1-9
37 schema:productId N3502301d948a475982c5378376b5743c
38 N4da0279dece54530955ac562a152d287
39 N90151bc2723a45289dc2d27a12031b53
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111748292
41 https://doi.org/10.1007/s12540-018-00237-4
42 schema:sdDatePublished 2019-04-11T08:58
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher Nf3adb28c8b814299a140ddb7acc4ec91
45 schema:url https://link.springer.com/10.1007%2Fs12540-018-00237-4
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N0874cd079c434297a2a26b73f9c7c226 schema:affiliation https://www.grid.ac/institutes/grid.410902.e
50 schema:familyName Yeom
51 schema:givenName Jong-Taek
52 rdf:type schema:Person
53 N3502301d948a475982c5378376b5743c schema:name doi
54 schema:value 10.1007/s12540-018-00237-4
55 rdf:type schema:PropertyValue
56 N4463783ecf1743a5a3f8d49e95dd89e8 rdf:first N790e949bd95a452f8a8589307559f44a
57 rdf:rest N8847c1c9677444a5bf95e5ef3bb34ba7
58 N46a105119d7d42c6b887b1c7a35c0ffe schema:affiliation https://www.grid.ac/institutes/grid.410902.e
59 schema:familyName Kim
60 schema:givenName Seung Eon
61 rdf:type schema:Person
62 N4b61625471c24a08a2da60ccb2a7dcc0 schema:affiliation https://www.grid.ac/institutes/grid.410902.e
63 schema:familyName Choi
64 schema:givenName Seong-Woo
65 rdf:type schema:Person
66 N4da0279dece54530955ac562a152d287 schema:name dimensions_id
67 schema:value pub.1111748292
68 rdf:type schema:PropertyValue
69 N5ac4894969094d49be3bd2262f13df19 schema:affiliation https://www.grid.ac/institutes/grid.256681.e
70 schema:familyName Reddy
71 schema:givenName N. S.
72 rdf:type schema:Person
73 N69049e2a0c3d44bf815c74770a83f70d rdf:first N5ac4894969094d49be3bd2262f13df19
74 rdf:rest N8f141620a75f4511a89f5055c53cb4d0
75 N6cc06c7f45ad437a8c7ab32c3886406b rdf:first N46a105119d7d42c6b887b1c7a35c0ffe
76 rdf:rest N69049e2a0c3d44bf815c74770a83f70d
77 N790e949bd95a452f8a8589307559f44a schema:affiliation https://www.grid.ac/institutes/grid.410902.e
78 schema:familyName Park
79 schema:givenName Chan Hee
80 rdf:type schema:Person
81 N7cf6445b501c4100811aaf5e1b279c12 schema:affiliation https://www.grid.ac/institutes/grid.410902.e
82 schema:familyName Li
83 schema:givenName Cheng-Lin
84 rdf:type schema:Person
85 N8847c1c9677444a5bf95e5ef3bb34ba7 rdf:first Nf8715905e44d4e90b08d52d4c4d0afe7
86 rdf:rest N6cc06c7f45ad437a8c7ab32c3886406b
87 N8f141620a75f4511a89f5055c53cb4d0 rdf:first N0874cd079c434297a2a26b73f9c7c226
88 rdf:rest rdf:nil
89 N90151bc2723a45289dc2d27a12031b53 schema:name readcube_id
90 schema:value 0d3393bd7603580fd1e7b2767e11a236163bf234b7c3b8f925d79a6acbc65af9
91 rdf:type schema:PropertyValue
92 Na0158219b2594316b1fff531e732a714 schema:affiliation https://www.grid.ac/institutes/grid.256681.e
93 schema:familyName Narayana
94 schema:givenName P. L.
95 rdf:type schema:Person
96 Nac78c7ab992a45e990ec19ff1c1e642f rdf:first N7cf6445b501c4100811aaf5e1b279c12
97 rdf:rest Nfa16d9a4c6d44627a360f3f8fb2f5582
98 Ndd4e77cd595842fabe23abbda88c2200 schema:affiliation https://www.grid.ac/institutes/grid.410902.e
99 schema:familyName Hong
100 schema:givenName Jae-Keun
101 rdf:type schema:Person
102 Ne07d8bb120dc4332a4e46ad0dc73e192 rdf:first Na0158219b2594316b1fff531e732a714
103 rdf:rest Nac78c7ab992a45e990ec19ff1c1e642f
104 Nead3240376384b4bb8aef000a905c069 rdf:first N4b61625471c24a08a2da60ccb2a7dcc0
105 rdf:rest N4463783ecf1743a5a3f8d49e95dd89e8
106 Nf3adb28c8b814299a140ddb7acc4ec91 schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 Nf8715905e44d4e90b08d52d4c4d0afe7 schema:affiliation https://www.grid.ac/institutes/grid.410902.e
109 schema:familyName Kim
110 schema:givenName Seong-Woong
111 rdf:type schema:Person
112 Nfa16d9a4c6d44627a360f3f8fb2f5582 rdf:first Ndd4e77cd595842fabe23abbda88c2200
113 rdf:rest Nead3240376384b4bb8aef000a905c069
114 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
115 schema:name Engineering
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
118 schema:name Materials Engineering
119 rdf:type schema:DefinedTerm
120 sg:journal.1136083 schema:issn 1225-9438
121 2005-4149
122 schema:name Metals and Materials International
123 rdf:type schema:Periodical
124 sg:pub.10.1007/bf00542809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006040658
125 https://doi.org/10.1007/bf00542809
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/bf02403806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042496049
128 https://doi.org/10.1007/bf02403806
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/bf02914711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043310743
131 https://doi.org/10.1007/bf02914711
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/0921-5093(92)90046-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050774987
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.commatsci.2015.05.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023465798
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.intermet.2009.07.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007747410
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.intermet.2011.08.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007111218
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.jallcom.2016.11.211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008221411
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.jmst.2013.07.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038926167
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.jnucmat.2014.01.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007029780
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.matdes.2007.02.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001960599
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.matdes.2013.03.082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011726924
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.msea.2008.12.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034952997
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.paerosci.2012.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042754218
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/s0921-5093(00)00741-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047234411
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/s1003-6326(11)61208-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022025140
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/s1003-6326(16)64234-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000443345
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/s1875-5372(10)60119-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008471206
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/s1875-5372(14)60089-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023086405
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1080/14786430701654378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023500995
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1179/imr.1998.43.6.243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022622812
168 rdf:type schema:CreativeWork
169 https://doi.org/10.2320/matertrans1989.35.787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024001573
170 rdf:type schema:CreativeWork
171 https://doi.org/10.2355/isijinternational.39.966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003726040
172 rdf:type schema:CreativeWork
173 https://doi.org/10.4028/www.scientific.net/amm.20-23.1211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071911740
174 rdf:type schema:CreativeWork
175 https://www.grid.ac/institutes/grid.256681.e schema:alternateName Gyeongsang National University
176 schema:name Advanced Metals Division, Korea Institute of Materials Science, 51508, Changwon, Republic of Korea
177 Engineering Research Institute, School of Materials Science and Engineering, Gyeongsang National University, 52828, Jinju, Republic of Korea
178 rdf:type schema:Organization
179 https://www.grid.ac/institutes/grid.410902.e schema:alternateName Korea Institute of Materials Science
180 schema:name Advanced Metals Division, Korea Institute of Materials Science, 51508, Changwon, Republic of Korea
181 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...