Characterization of deposited layer fabricated by direct laser melting process View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-05

AUTHORS

Jeong-Hwan Jang, Byeong-Don Joo, Chester J. Van Tyne, Young-Hoon Moon

ABSTRACT

Deposition dimensions are important in the final applications of products made by direct laser melting (DLM). This investigation used a 200 W fiber laser to produce single-line beads from stainless steel 316L powder using a variety of different energy distributions. To investigate the deposited layer, deposition width, height, penetration depth, and side surface roughness were measured. In order to validate the effectiveness of the two main process parameters (laser power and scan rate), multi-layered beads were fabricated by the sequential layering of single lines. It was found that with an increase in linear energy density, the wetting angle was reduced, and the average roughness was also increased with linear energy density. An equation that predicts the deposition height for a multi-layered bead is proposed and experimentally validated in this study. For deposited layer applications, the material properties of the deposited layer, such as contact angle, interfacial contact resistance, and flexural strength are estimated. The rougher deposited layers show higher contact angle and interfacial contact resistance. The flexural strength of the DLM fabricated specimen is above 250 MPa. More... »

PAGES

497-506

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12540-013-3018-6

DOI

http://dx.doi.org/10.1007/s12540-013-3018-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003754860


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Pusan National University", 
          "id": "https://www.grid.ac/institutes/grid.262229.f", 
          "name": [
            "School of Mechanical Engineering/Engineering Research Center for Net Shape and Die Manufacturing, Pusan National University, 609-735, Busan, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jang", 
        "givenName": "Jeong-Hwan", 
        "id": "sg:person.014203111400.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014203111400.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pusan National University", 
          "id": "https://www.grid.ac/institutes/grid.262229.f", 
          "name": [
            "School of Mechanical Engineering/Engineering Research Center for Net Shape and Die Manufacturing, Pusan National University, 609-735, Busan, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Joo", 
        "givenName": "Byeong-Don", 
        "id": "sg:person.012062032345.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012062032345.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colorado School of Mines", 
          "id": "https://www.grid.ac/institutes/grid.254549.b", 
          "name": [
            "Department of Metallurgical and Materials Engineering, Colorado School of Mines, 80401, Golden, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Van Tyne", 
        "givenName": "Chester J.", 
        "id": "sg:person.07741770136.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07741770136.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pusan National University", 
          "id": "https://www.grid.ac/institutes/grid.262229.f", 
          "name": [
            "School of Mechanical Engineering/Engineering Research Center for Net Shape and Die Manufacturing, Pusan National University, 609-735, Busan, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moon", 
        "givenName": "Young-Hoon", 
        "id": "sg:person.015202214425.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015202214425.94"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.apsusc.2008.07.202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007796121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2009.09.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010265113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-5093(03)00435-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011005847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-5093(03)00435-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011005847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optlastec.2004.04.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017729749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0017-9310(00)00316-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019708932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12540-011-0223-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020479985", 
          "https://doi.org/10.1007/s12540-011-0223-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2009.01.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026202716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2010.05.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027818721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2007.04.117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036167234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2009.06.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040422758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:jmsc.0000013875.62536.fa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041566134", 
          "https://doi.org/10.1023/b:jmsc.0000013875.62536.fa"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optlastec.2006.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046104383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2006.11.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046202106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2008.10.068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049997942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3365/kjmm.2010.48.02.163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071183051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3365/kjmm.2010.48.04.297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071183069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3365/kjmm.2010.48.05.424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071183088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3365/kjmm.2012.50.3.191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071183409"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-05", 
    "datePublishedReg": "2013-05-01", 
    "description": "Deposition dimensions are important in the final applications of products made by direct laser melting (DLM). This investigation used a 200 W fiber laser to produce single-line beads from stainless steel 316L powder using a variety of different energy distributions. To investigate the deposited layer, deposition width, height, penetration depth, and side surface roughness were measured. In order to validate the effectiveness of the two main process parameters (laser power and scan rate), multi-layered beads were fabricated by the sequential layering of single lines. It was found that with an increase in linear energy density, the wetting angle was reduced, and the average roughness was also increased with linear energy density. An equation that predicts the deposition height for a multi-layered bead is proposed and experimentally validated in this study. For deposited layer applications, the material properties of the deposited layer, such as contact angle, interfacial contact resistance, and flexural strength are estimated. The rougher deposited layers show higher contact angle and interfacial contact resistance. The flexural strength of the DLM fabricated specimen is above 250 MPa.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12540-013-3018-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136083", 
        "issn": [
          "1225-9438", 
          "2005-4149"
        ], 
        "name": "Metals and Materials International", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "Characterization of deposited layer fabricated by direct laser melting process", 
    "pagination": "497-506", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "11e308f72a6ff82f785054e6183e7fc8ff72dc1debc834f36e4fc438da967d7a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12540-013-3018-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003754860"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12540-013-3018-6", 
      "https://app.dimensions.ai/details/publication/pub.1003754860"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000520.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs12540-013-3018-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12540-013-3018-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12540-013-3018-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12540-013-3018-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12540-013-3018-6'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12540-013-3018-6 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Ne8aa21ca1d2b42ffacacb41f70af5a6e
4 schema:citation sg:pub.10.1007/s12540-011-0223-z
5 sg:pub.10.1023/b:jmsc.0000013875.62536.fa
6 https://doi.org/10.1016/j.apsusc.2008.07.202
7 https://doi.org/10.1016/j.ijhydene.2008.10.068
8 https://doi.org/10.1016/j.jmatprotec.2007.04.117
9 https://doi.org/10.1016/j.jmatprotec.2009.06.012
10 https://doi.org/10.1016/j.jmatprotec.2009.09.011
11 https://doi.org/10.1016/j.jmatprotec.2010.05.010
12 https://doi.org/10.1016/j.jpowsour.2006.11.033
13 https://doi.org/10.1016/j.matdes.2009.01.013
14 https://doi.org/10.1016/j.optlastec.2004.04.009
15 https://doi.org/10.1016/j.optlastec.2006.09.008
16 https://doi.org/10.1016/s0017-9310(00)00316-1
17 https://doi.org/10.1016/s0921-5093(03)00435-0
18 https://doi.org/10.3365/kjmm.2010.48.02.163
19 https://doi.org/10.3365/kjmm.2010.48.04.297
20 https://doi.org/10.3365/kjmm.2010.48.05.424
21 https://doi.org/10.3365/kjmm.2012.50.3.191
22 schema:datePublished 2013-05
23 schema:datePublishedReg 2013-05-01
24 schema:description Deposition dimensions are important in the final applications of products made by direct laser melting (DLM). This investigation used a 200 W fiber laser to produce single-line beads from stainless steel 316L powder using a variety of different energy distributions. To investigate the deposited layer, deposition width, height, penetration depth, and side surface roughness were measured. In order to validate the effectiveness of the two main process parameters (laser power and scan rate), multi-layered beads were fabricated by the sequential layering of single lines. It was found that with an increase in linear energy density, the wetting angle was reduced, and the average roughness was also increased with linear energy density. An equation that predicts the deposition height for a multi-layered bead is proposed and experimentally validated in this study. For deposited layer applications, the material properties of the deposited layer, such as contact angle, interfacial contact resistance, and flexural strength are estimated. The rougher deposited layers show higher contact angle and interfacial contact resistance. The flexural strength of the DLM fabricated specimen is above 250 MPa.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N6f960171104e4cb1b5ece5cf3abb4979
29 Nb0510f2622644870a437a3fccefdcb58
30 sg:journal.1136083
31 schema:name Characterization of deposited layer fabricated by direct laser melting process
32 schema:pagination 497-506
33 schema:productId N77c2e60af59c4e4dbb5880a6bd073793
34 Nb7d2d6cbaa664b48bc3b7b017ac6720e
35 Nd8d77ab4efac46c8bbabe05508800832
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003754860
37 https://doi.org/10.1007/s12540-013-3018-6
38 schema:sdDatePublished 2019-04-10T20:48
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher Nd0ee6f27893b459391d29536f85e6ec8
41 schema:url http://link.springer.com/10.1007%2Fs12540-013-3018-6
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N20a3b5ecffb44614a482badee4fee128 rdf:first sg:person.012062032345.31
46 rdf:rest Nc09c8f07def848cab6b8dc1bef8dd7ed
47 N6f960171104e4cb1b5ece5cf3abb4979 schema:issueNumber 3
48 rdf:type schema:PublicationIssue
49 N77c2e60af59c4e4dbb5880a6bd073793 schema:name doi
50 schema:value 10.1007/s12540-013-3018-6
51 rdf:type schema:PropertyValue
52 Nb0510f2622644870a437a3fccefdcb58 schema:volumeNumber 19
53 rdf:type schema:PublicationVolume
54 Nb47e1e9f7b6b41388137f409e3866c29 rdf:first sg:person.015202214425.94
55 rdf:rest rdf:nil
56 Nb7d2d6cbaa664b48bc3b7b017ac6720e schema:name readcube_id
57 schema:value 11e308f72a6ff82f785054e6183e7fc8ff72dc1debc834f36e4fc438da967d7a
58 rdf:type schema:PropertyValue
59 Nc09c8f07def848cab6b8dc1bef8dd7ed rdf:first sg:person.07741770136.12
60 rdf:rest Nb47e1e9f7b6b41388137f409e3866c29
61 Nd0ee6f27893b459391d29536f85e6ec8 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 Nd8d77ab4efac46c8bbabe05508800832 schema:name dimensions_id
64 schema:value pub.1003754860
65 rdf:type schema:PropertyValue
66 Ne8aa21ca1d2b42ffacacb41f70af5a6e rdf:first sg:person.014203111400.76
67 rdf:rest N20a3b5ecffb44614a482badee4fee128
68 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
69 schema:name Engineering
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
72 schema:name Materials Engineering
73 rdf:type schema:DefinedTerm
74 sg:journal.1136083 schema:issn 1225-9438
75 2005-4149
76 schema:name Metals and Materials International
77 rdf:type schema:Periodical
78 sg:person.012062032345.31 schema:affiliation https://www.grid.ac/institutes/grid.262229.f
79 schema:familyName Joo
80 schema:givenName Byeong-Don
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012062032345.31
82 rdf:type schema:Person
83 sg:person.014203111400.76 schema:affiliation https://www.grid.ac/institutes/grid.262229.f
84 schema:familyName Jang
85 schema:givenName Jeong-Hwan
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014203111400.76
87 rdf:type schema:Person
88 sg:person.015202214425.94 schema:affiliation https://www.grid.ac/institutes/grid.262229.f
89 schema:familyName Moon
90 schema:givenName Young-Hoon
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015202214425.94
92 rdf:type schema:Person
93 sg:person.07741770136.12 schema:affiliation https://www.grid.ac/institutes/grid.254549.b
94 schema:familyName Van Tyne
95 schema:givenName Chester J.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07741770136.12
97 rdf:type schema:Person
98 sg:pub.10.1007/s12540-011-0223-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1020479985
99 https://doi.org/10.1007/s12540-011-0223-z
100 rdf:type schema:CreativeWork
101 sg:pub.10.1023/b:jmsc.0000013875.62536.fa schema:sameAs https://app.dimensions.ai/details/publication/pub.1041566134
102 https://doi.org/10.1023/b:jmsc.0000013875.62536.fa
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.apsusc.2008.07.202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007796121
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.ijhydene.2008.10.068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049997942
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.jmatprotec.2007.04.117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036167234
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.jmatprotec.2009.06.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040422758
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.jmatprotec.2009.09.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010265113
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.jmatprotec.2010.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027818721
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.jpowsour.2006.11.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046202106
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.matdes.2009.01.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026202716
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.optlastec.2004.04.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017729749
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.optlastec.2006.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046104383
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/s0017-9310(00)00316-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019708932
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/s0921-5093(03)00435-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011005847
127 rdf:type schema:CreativeWork
128 https://doi.org/10.3365/kjmm.2010.48.02.163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071183051
129 rdf:type schema:CreativeWork
130 https://doi.org/10.3365/kjmm.2010.48.04.297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071183069
131 rdf:type schema:CreativeWork
132 https://doi.org/10.3365/kjmm.2010.48.05.424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071183088
133 rdf:type schema:CreativeWork
134 https://doi.org/10.3365/kjmm.2012.50.3.191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071183409
135 rdf:type schema:CreativeWork
136 https://www.grid.ac/institutes/grid.254549.b schema:alternateName Colorado School of Mines
137 schema:name Department of Metallurgical and Materials Engineering, Colorado School of Mines, 80401, Golden, CO, USA
138 rdf:type schema:Organization
139 https://www.grid.ac/institutes/grid.262229.f schema:alternateName Pusan National University
140 schema:name School of Mechanical Engineering/Engineering Research Center for Net Shape and Die Manufacturing, Pusan National University, 609-735, Busan, Korea
141 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...