Ontology type: schema:ScholarlyArticle Open Access: True
2009-10
AUTHORSRonny Luss, Alexandre d’Aspremont
ABSTRACTWe propose a method for support vector machine classification using indefinite kernels. Instead of directly minimizing or stabilizing a nonconvex loss function, our algorithm simultaneously computes support vectors and a proxy kernel matrix used in forming the loss. This can be interpreted as a penalized kernel learning problem where indefinite kernel matrices are treated as noisy observations of a true Mercer kernel. Our formulation keeps the problem convex and relatively large problems can be solved efficiently using the projected gradient or analytic center cutting plane methods. We compare the performance of our technique with other methods on several standard data sets. More... »
PAGES97-118
http://scigraph.springernature.com/pub.10.1007/s12532-009-0005-5
DOIhttp://dx.doi.org/10.1007/s12532-009-0005-5
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1022274372
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Princeton University",
"id": "https://www.grid.ac/institutes/grid.16750.35",
"name": [
"ORFE Department, Princeton University, 08544, Princeton, NJ, USA"
],
"type": "Organization"
},
"familyName": "Luss",
"givenName": "Ronny",
"id": "sg:person.016456423716.19",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016456423716.19"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Princeton University",
"id": "https://www.grid.ac/institutes/grid.16750.35",
"name": [
"ORFE Department, Princeton University, 08544, Princeton, NJ, USA"
],
"type": "Organization"
},
"familyName": "d\u2019Aspremont",
"givenName": "Alexandre",
"id": "sg:person.012750457111.14",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012750457111.14"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1145/1015330.1015424",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005040776"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/1143844.1143908",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013799066"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/1390156.1390174",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015250931"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/1055678021000060829a",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017066776"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/1553374.1553393",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024910505"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/3-540-49430-8_13",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026545665",
"https://doi.org/10.1007/3-540-49430-8_13"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/3-540-49430-8_13",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026545665",
"https://doi.org/10.1007/3-540-49430-8_13"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1026756433",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-662-02796-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026756433",
"https://doi.org/10.1007/978-3-662-02796-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-662-02796-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026756433",
"https://doi.org/10.1007/978-3-662-02796-7"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/bth141",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035544988"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1057/palgrave.jors.2600425",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039205956",
"https://doi.org/10.1057/palgrave.jors.2600425"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/imanum/22.3.329",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059688980"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/34.291440",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061155985"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tpami.2005.78",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061742933"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/0802007",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062854158"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/1035089",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062863545"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10107980004a",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1083414997",
"https://doi.org/10.1007/s10107980004a"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/icdm.2006.60",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1093185890"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/icdm.2006.60",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1093185890"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/icpr.2002.1048439",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1093203821"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/cbmi.2007.385386",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1094821975"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/1.9781611971446",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1098555836"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1017/cbo9780511804441",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1098700691"
],
"type": "CreativeWork"
}
],
"datePublished": "2009-10",
"datePublishedReg": "2009-10-01",
"description": "We propose a method for support vector machine classification using indefinite kernels. Instead of directly minimizing or stabilizing a nonconvex loss function, our algorithm simultaneously computes support vectors and a proxy kernel matrix used in forming the loss. This can be interpreted as a penalized kernel learning problem where indefinite kernel matrices are treated as noisy observations of a true Mercer kernel. Our formulation keeps the problem convex and relatively large problems can be solved efficiently using the projected gradient or analytic center cutting plane methods. We compare the performance of our technique with other methods on several standard data sets.",
"genre": "research_article",
"id": "sg:pub.10.1007/s12532-009-0005-5",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1053027",
"issn": [
"1867-2949",
"1867-2957"
],
"name": "Mathematical Programming Computation",
"type": "Periodical"
},
{
"issueNumber": "2-3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "1"
}
],
"name": "Support vector machine classification with indefinite kernels",
"pagination": "97-118",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"6a1ead6580b03edf8338760b918563e8217236634e8a3cd7b9c8907ad1301050"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s12532-009-0005-5"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1022274372"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s12532-009-0005-5",
"https://app.dimensions.ai/details/publication/pub.1022274372"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T09:24",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000345_0000000345/records_64094_00000000.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007%2Fs12532-009-0005-5"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12532-009-0005-5'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12532-009-0005-5'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12532-009-0005-5'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12532-009-0005-5'
This table displays all metadata directly associated to this object as RDF triples.
134 TRIPLES
21 PREDICATES
48 URIs
19 LITERALS
7 BLANK NODES