Estimating Pylon Height Using Differences in Shadows Between GF-2 Images View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Xiaofei Mi, Tao Yu, Jian Yang, Jibao Lai, Zhouwei Zhang, Yazhou Zhang, Yulin Zhan

ABSTRACT

Information on height of pylon is important when planning the routes of unmanned aerial vehicles. This paper proposes a new automatic method for estimating pylon height using shadow differences between GF-2 satellite images taken at different times. Initially, the spectral distribution features and triangular shape of pylon shadows are used for shadow detection to enhance the difference from other land objects using images taken at a greater sun elevation angle. Then, the difference in the shadows of the same pylon in images taken at different times and shadow-imaging principles are used to estimate the vertical of the pylon top to avoid interference from complex land objects. Finally, the height of the pylon is approximated using the distance from the vertical projection point to the shadow point of the pylon top and sun elevation angle. GF-2 images were selected and included five pylons in the target area. The average error of the estimated height was 1.56 m, and the relative error was only 2.74%. More... »

PAGES

279-288

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12524-018-0928-2

DOI

http://dx.doi.org/10.1007/s12524-018-0928-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111580186


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 100101, Beijing, China", 
            "University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mi", 
        "givenName": "Xiaofei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Remote Sensing and Digital Earth", 
          "id": "https://www.grid.ac/institutes/grid.458443.a", 
          "name": [
            "Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 100101, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Tao", 
        "id": "sg:person.012140646553.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012140646553.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Remote Sensing and Digital Earth", 
          "id": "https://www.grid.ac/institutes/grid.458443.a", 
          "name": [
            "Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 100101, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Jian", 
        "id": "sg:person.016337033243.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016337033243.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Earth Observation and Data Center, CNSA, 100101, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lai", 
        "givenName": "Jibao", 
        "id": "sg:person.012147050701.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012147050701.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Remote Sensing and Digital Earth", 
          "id": "https://www.grid.ac/institutes/grid.458443.a", 
          "name": [
            "Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 100101, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Zhouwei", 
        "id": "sg:person.016507510272.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016507510272.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ludong University", 
          "id": "https://www.grid.ac/institutes/grid.443651.1", 
          "name": [
            "School of Resources and Environmental Engineering, Ludong University, 264024, Yantai, Shandong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Yazhou", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Remote Sensing and Digital Earth", 
          "id": "https://www.grid.ac/institutes/grid.458443.a", 
          "name": [
            "Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 100101, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhan", 
        "givenName": "Yulin", 
        "id": "sg:person.015504322215.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015504322215.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0734-189x(90)90139-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000566516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431160701395302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001486528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431169508954409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028317336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0734-189x(88)90016-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030324320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cviu.2004.03.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033212930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.2063873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038419627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14358/pers.71.2.169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045814305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/01480540903130674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047410997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431161.2010.517226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047925993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs70911501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050971738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2006.869980", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061609731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2008.2004629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061610561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2010.2096515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061611693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2011.2158221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061611906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078453573", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/sibgra.2003.1241019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094332430"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "Information on height of pylon is important when planning the routes of unmanned aerial vehicles. This paper proposes a new automatic method for estimating pylon height using shadow differences between GF-2 satellite images taken at different times. Initially, the spectral distribution features and triangular shape of pylon shadows are used for shadow detection to enhance the difference from other land objects using images taken at a greater sun elevation angle. Then, the difference in the shadows of the same pylon in images taken at different times and shadow-imaging principles are used to estimate the vertical of the pylon top to avoid interference from complex land objects. Finally, the height of the pylon is approximated using the distance from the vertical projection point to the shadow point of the pylon top and sun elevation angle. GF-2 images were selected and included five pylons in the target area. The average error of the estimated height was 1.56 m, and the relative error was only 2.74%.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12524-018-0928-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136874", 
        "issn": [
          "0255-660X", 
          "0974-3006"
        ], 
        "name": "Journal of the Indian Society of Remote Sensing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "47"
      }
    ], 
    "name": "Estimating Pylon Height Using Differences in Shadows Between GF-2 Images", 
    "pagination": "279-288", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "62fee59d87b5e48d3f55ebe6d0c53ccdb6f4464ee57785d367a4fa6be05d47f5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12524-018-0928-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111580186"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12524-018-0928-2", 
      "https://app.dimensions.ai/details/publication/pub.1111580186"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60369_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12524-018-0928-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12524-018-0928-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12524-018-0928-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12524-018-0928-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12524-018-0928-2'


 

This table displays all metadata directly associated to this object as RDF triples.

157 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12524-018-0928-2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N9026dde6d64f498c948b774868fc36e9
4 schema:citation https://app.dimensions.ai/details/publication/pub.1078453573
5 https://doi.org/10.1016/0734-189x(88)90016-3
6 https://doi.org/10.1016/0734-189x(90)90139-m
7 https://doi.org/10.1016/j.cviu.2004.03.008
8 https://doi.org/10.1080/01431160701395302
9 https://doi.org/10.1080/01431161.2010.517226
10 https://doi.org/10.1080/01431169508954409
11 https://doi.org/10.1109/sibgra.2003.1241019
12 https://doi.org/10.1109/tgrs.2006.869980
13 https://doi.org/10.1109/tgrs.2008.2004629
14 https://doi.org/10.1109/tgrs.2010.2096515
15 https://doi.org/10.1109/tgrs.2011.2158221
16 https://doi.org/10.1117/12.2063873
17 https://doi.org/10.14358/pers.71.2.169
18 https://doi.org/10.3109/01480540903130674
19 https://doi.org/10.3390/rs70911501
20 schema:datePublished 2019-02
21 schema:datePublishedReg 2019-02-01
22 schema:description Information on height of pylon is important when planning the routes of unmanned aerial vehicles. This paper proposes a new automatic method for estimating pylon height using shadow differences between GF-2 satellite images taken at different times. Initially, the spectral distribution features and triangular shape of pylon shadows are used for shadow detection to enhance the difference from other land objects using images taken at a greater sun elevation angle. Then, the difference in the shadows of the same pylon in images taken at different times and shadow-imaging principles are used to estimate the vertical of the pylon top to avoid interference from complex land objects. Finally, the height of the pylon is approximated using the distance from the vertical projection point to the shadow point of the pylon top and sun elevation angle. GF-2 images were selected and included five pylons in the target area. The average error of the estimated height was 1.56 m, and the relative error was only 2.74%.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N4ffc887cd33647e39c9ddc0fc966fcac
27 N5540d34e496c497b8a07b3c7d2efe7b8
28 sg:journal.1136874
29 schema:name Estimating Pylon Height Using Differences in Shadows Between GF-2 Images
30 schema:pagination 279-288
31 schema:productId N191c4bf19e134a96a26fe3bae0027094
32 N21c72f02255742c1af817d49ec77dd9e
33 N81326017e7434e07be6744b54d7fe519
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111580186
35 https://doi.org/10.1007/s12524-018-0928-2
36 schema:sdDatePublished 2019-04-11T11:05
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N75edd540b2304acf9b0ae00f83aa049f
39 schema:url https://link.springer.com/10.1007%2Fs12524-018-0928-2
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N191c4bf19e134a96a26fe3bae0027094 schema:name readcube_id
44 schema:value 62fee59d87b5e48d3f55ebe6d0c53ccdb6f4464ee57785d367a4fa6be05d47f5
45 rdf:type schema:PropertyValue
46 N1a0ba75006b344a4aef71bbd0a661b66 rdf:first Nb607a8ccbeca4053be4e520ad6fd26fa
47 rdf:rest N47f9b6456a0540bcac9d9f13c0b8217f
48 N21c72f02255742c1af817d49ec77dd9e schema:name doi
49 schema:value 10.1007/s12524-018-0928-2
50 rdf:type schema:PropertyValue
51 N28a415525c11460085b597ff81f7f8c5 rdf:first sg:person.012140646553.43
52 rdf:rest N3c883aae8bb74bd3a0c0e23ed969cc49
53 N3c883aae8bb74bd3a0c0e23ed969cc49 rdf:first sg:person.016337033243.05
54 rdf:rest Naade7e456c5c4ca98f123a74e159d51f
55 N47f9b6456a0540bcac9d9f13c0b8217f rdf:first sg:person.015504322215.02
56 rdf:rest rdf:nil
57 N4ffc887cd33647e39c9ddc0fc966fcac schema:issueNumber 2
58 rdf:type schema:PublicationIssue
59 N5540d34e496c497b8a07b3c7d2efe7b8 schema:volumeNumber 47
60 rdf:type schema:PublicationVolume
61 N75edd540b2304acf9b0ae00f83aa049f schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N81326017e7434e07be6744b54d7fe519 schema:name dimensions_id
64 schema:value pub.1111580186
65 rdf:type schema:PropertyValue
66 N9026dde6d64f498c948b774868fc36e9 rdf:first Nfd63c3ef1f634509bf90ea5998905250
67 rdf:rest N28a415525c11460085b597ff81f7f8c5
68 Naade7e456c5c4ca98f123a74e159d51f rdf:first sg:person.012147050701.55
69 rdf:rest Ne2219f96a194431995967110dc940c4b
70 Nb607a8ccbeca4053be4e520ad6fd26fa schema:affiliation https://www.grid.ac/institutes/grid.443651.1
71 schema:familyName Zhang
72 schema:givenName Yazhou
73 rdf:type schema:Person
74 Ncf7fe58c7b7147718ef5f6f3aefba304 schema:name Earth Observation and Data Center, CNSA, 100101, Beijing, China
75 rdf:type schema:Organization
76 Ne2219f96a194431995967110dc940c4b rdf:first sg:person.016507510272.01
77 rdf:rest N1a0ba75006b344a4aef71bbd0a661b66
78 Nfd63c3ef1f634509bf90ea5998905250 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
79 schema:familyName Mi
80 schema:givenName Xiaofei
81 rdf:type schema:Person
82 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
83 schema:name Information and Computing Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
86 schema:name Artificial Intelligence and Image Processing
87 rdf:type schema:DefinedTerm
88 sg:journal.1136874 schema:issn 0255-660X
89 0974-3006
90 schema:name Journal of the Indian Society of Remote Sensing
91 rdf:type schema:Periodical
92 sg:person.012140646553.43 schema:affiliation https://www.grid.ac/institutes/grid.458443.a
93 schema:familyName Yu
94 schema:givenName Tao
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012140646553.43
96 rdf:type schema:Person
97 sg:person.012147050701.55 schema:affiliation Ncf7fe58c7b7147718ef5f6f3aefba304
98 schema:familyName Lai
99 schema:givenName Jibao
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012147050701.55
101 rdf:type schema:Person
102 sg:person.015504322215.02 schema:affiliation https://www.grid.ac/institutes/grid.458443.a
103 schema:familyName Zhan
104 schema:givenName Yulin
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015504322215.02
106 rdf:type schema:Person
107 sg:person.016337033243.05 schema:affiliation https://www.grid.ac/institutes/grid.458443.a
108 schema:familyName Yang
109 schema:givenName Jian
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016337033243.05
111 rdf:type schema:Person
112 sg:person.016507510272.01 schema:affiliation https://www.grid.ac/institutes/grid.458443.a
113 schema:familyName Zhang
114 schema:givenName Zhouwei
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016507510272.01
116 rdf:type schema:Person
117 https://app.dimensions.ai/details/publication/pub.1078453573 schema:CreativeWork
118 https://doi.org/10.1016/0734-189x(88)90016-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030324320
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/0734-189x(90)90139-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1000566516
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.cviu.2004.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033212930
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1080/01431160701395302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001486528
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1080/01431161.2010.517226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047925993
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1080/01431169508954409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028317336
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1109/sibgra.2003.1241019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094332430
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1109/tgrs.2006.869980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061609731
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1109/tgrs.2008.2004629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061610561
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/tgrs.2010.2096515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061611693
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/tgrs.2011.2158221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061611906
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1117/12.2063873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038419627
141 rdf:type schema:CreativeWork
142 https://doi.org/10.14358/pers.71.2.169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045814305
143 rdf:type schema:CreativeWork
144 https://doi.org/10.3109/01480540903130674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047410997
145 rdf:type schema:CreativeWork
146 https://doi.org/10.3390/rs70911501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050971738
147 rdf:type schema:CreativeWork
148 https://www.grid.ac/institutes/grid.410726.6 schema:alternateName University of Chinese Academy of Sciences
149 schema:name Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 100101, Beijing, China
150 University of Chinese Academy of Sciences, 100049, Beijing, China
151 rdf:type schema:Organization
152 https://www.grid.ac/institutes/grid.443651.1 schema:alternateName Ludong University
153 schema:name School of Resources and Environmental Engineering, Ludong University, 264024, Yantai, Shandong, China
154 rdf:type schema:Organization
155 https://www.grid.ac/institutes/grid.458443.a schema:alternateName Institute of Remote Sensing and Digital Earth
156 schema:name Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 100101, Beijing, China
157 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...