Posterior Cramér Rao Bounds for Cooperative Localization in Low-Cost UAV Swarms View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Salil Goel, Allison Kealy, Bharat Lohani

ABSTRACT

Cooperative networks of unmanned aerial vehicles (UAV) offer interesting advantages such as increased efficiency and improved accuracy when compared with independently operating UAVs in most applications like remote sensing, mapping, surveillance, exploration, search and rescue, situational awareness, disaster management. However, the quality of the products derived using UAV data is very much dependent on the accuracy with which a UAV can be localized. Although cooperative localization has been shown to improve the localization accuracy of all the UAVs in a network even in global navigation satellite system (GNSS) challenging environments, not all UAVs in a network can achieve equal navigational performance. The objective of this paper is to analyze the various parameters that affect the performance of UAVs in a cooperative network. This paper derives the theoretical performance bound of the localization accuracy that can be achieved by any UAV in the network. This performance bound is derived using posterior Cramér Rao bound and is further used to analyze the effects of various parameters such as network geometry and connectivity, quality of available measurements and the availability of GNSS in the network. Through this analysis, the limitations and the benefits of a cooperative UAV swarm for any application (such as mapping or remote sensing) are presented. More... »

PAGES

671-684

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12524-018-0899-3

DOI

http://dx.doi.org/10.1007/s12524-018-0899-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110227072


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Kanpur", 
          "id": "https://www.grid.ac/institutes/grid.417965.8", 
          "name": [
            "Geoinformatics Laboratory, Department of Civil Engineering, Indian Institute of Technology Kanpur, 208 016, Kanpur, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goel", 
        "givenName": "Salil", 
        "id": "sg:person.011154547466.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011154547466.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RMIT University", 
          "id": "https://www.grid.ac/institutes/grid.1017.7", 
          "name": [
            "Department of Geospatial Science, RMIT University, Melbourne, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kealy", 
        "givenName": "Allison", 
        "id": "sg:person.01305034032.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305034032.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Kanpur", 
          "id": "https://www.grid.ac/institutes/grid.417965.8", 
          "name": [
            "Geoinformatics Laboratory, Department of Civil Engineering, Indian Institute of Technology Kanpur, 208 016, Kanpur, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lohani", 
        "givenName": "Bharat", 
        "id": "sg:person.010100014654.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010100014654.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1017/s0373463300008821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037961202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0373463300008821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037961202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0373463307004444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046786374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/78.668800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061230184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jproc.2008.2008853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061296922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstars.2013.2250921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061332930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lcomm.2010.091310.101060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061348760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lsp.2003.822899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061376286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.1979.1101979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061472534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2008.2008720", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061610643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2008.2009763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061610665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2009.2015657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061610982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2011.2167339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061612048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2013.2265295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061613012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2014.2308208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061613394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tro.2006.878957", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061784665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/isprsannals-iii-1-183-2016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072675556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)su.1943-5428.0000230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085313062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iros.2001.976240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094207900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431161.2018.1434331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100947021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/jsan7040042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107149323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.33012/2017.15217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110550660"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Cooperative networks of unmanned aerial vehicles (UAV) offer interesting advantages such as increased efficiency and improved accuracy when compared with independently operating UAVs in most applications like remote sensing, mapping, surveillance, exploration, search and rescue, situational awareness, disaster management. However, the quality of the products derived using UAV data is very much dependent on the accuracy with which a UAV can be localized. Although cooperative localization has been shown to improve the localization accuracy of all the UAVs in a network even in global navigation satellite system (GNSS) challenging environments, not all UAVs in a network can achieve equal navigational performance. The objective of this paper is to analyze the various parameters that affect the performance of UAVs in a cooperative network. This paper derives the theoretical performance bound of the localization accuracy that can be achieved by any UAV in the network. This performance bound is derived using posterior Cram\u00e9r Rao bound and is further used to analyze the effects of various parameters such as network geometry and connectivity, quality of available measurements and the availability of GNSS in the network. Through this analysis, the limitations and the benefits of a cooperative UAV swarm for any application (such as mapping or remote sensing) are presented.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12524-018-0899-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136874", 
        "issn": [
          "0255-660X", 
          "0974-3006"
        ], 
        "name": "Journal of the Indian Society of Remote Sensing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "47"
      }
    ], 
    "name": "Posterior Cram\u00e9r Rao Bounds for Cooperative Localization in Low-Cost UAV Swarms", 
    "pagination": "671-684", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "866becd1da9b72a9be38d8bdc85950a278b6a14112b5efc1940f99f3d30e463e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12524-018-0899-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110227072"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12524-018-0899-3", 
      "https://app.dimensions.ai/details/publication/pub.1110227072"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130826_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12524-018-0899-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12524-018-0899-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12524-018-0899-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12524-018-0899-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12524-018-0899-3'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12524-018-0899-3 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nf7a7c1b798f24a8c93f923c3812408bd
4 schema:citation https://doi.org/10.1017/s0373463300008821
5 https://doi.org/10.1017/s0373463307004444
6 https://doi.org/10.1061/(asce)su.1943-5428.0000230
7 https://doi.org/10.1080/01431161.2018.1434331
8 https://doi.org/10.1109/78.668800
9 https://doi.org/10.1109/iros.2001.976240
10 https://doi.org/10.1109/jproc.2008.2008853
11 https://doi.org/10.1109/jstars.2013.2250921
12 https://doi.org/10.1109/lcomm.2010.091310.101060
13 https://doi.org/10.1109/lsp.2003.822899
14 https://doi.org/10.1109/tac.1979.1101979
15 https://doi.org/10.1109/tgrs.2008.2008720
16 https://doi.org/10.1109/tgrs.2008.2009763
17 https://doi.org/10.1109/tgrs.2009.2015657
18 https://doi.org/10.1109/tgrs.2011.2167339
19 https://doi.org/10.1109/tgrs.2013.2265295
20 https://doi.org/10.1109/tgrs.2014.2308208
21 https://doi.org/10.1109/tro.2006.878957
22 https://doi.org/10.33012/2017.15217
23 https://doi.org/10.3390/jsan7040042
24 https://doi.org/10.5194/isprsannals-iii-1-183-2016
25 schema:datePublished 2019-04
26 schema:datePublishedReg 2019-04-01
27 schema:description Cooperative networks of unmanned aerial vehicles (UAV) offer interesting advantages such as increased efficiency and improved accuracy when compared with independently operating UAVs in most applications like remote sensing, mapping, surveillance, exploration, search and rescue, situational awareness, disaster management. However, the quality of the products derived using UAV data is very much dependent on the accuracy with which a UAV can be localized. Although cooperative localization has been shown to improve the localization accuracy of all the UAVs in a network even in global navigation satellite system (GNSS) challenging environments, not all UAVs in a network can achieve equal navigational performance. The objective of this paper is to analyze the various parameters that affect the performance of UAVs in a cooperative network. This paper derives the theoretical performance bound of the localization accuracy that can be achieved by any UAV in the network. This performance bound is derived using posterior Cramér Rao bound and is further used to analyze the effects of various parameters such as network geometry and connectivity, quality of available measurements and the availability of GNSS in the network. Through this analysis, the limitations and the benefits of a cooperative UAV swarm for any application (such as mapping or remote sensing) are presented.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf Nb8a8108107aa4118bcfb757c8487673d
32 Ndc49bee604f04436a2566ada68c8f76b
33 sg:journal.1136874
34 schema:name Posterior Cramér Rao Bounds for Cooperative Localization in Low-Cost UAV Swarms
35 schema:pagination 671-684
36 schema:productId N1fc9accfef014637bd06fbb61fca6f1a
37 N2efc979b9c274c73b547104ed3140ee2
38 N9942f228b43d4217a7989ed02e8c96f1
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110227072
40 https://doi.org/10.1007/s12524-018-0899-3
41 schema:sdDatePublished 2019-04-11T14:00
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N588f1d85939e480ba1aff67a282eff34
44 schema:url https://link.springer.com/10.1007%2Fs12524-018-0899-3
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N08f51ab4b54747f681b316820a7d2c99 rdf:first sg:person.01305034032.55
49 rdf:rest N31efb4ea711746199979cb2b416ff12b
50 N1fc9accfef014637bd06fbb61fca6f1a schema:name doi
51 schema:value 10.1007/s12524-018-0899-3
52 rdf:type schema:PropertyValue
53 N2efc979b9c274c73b547104ed3140ee2 schema:name readcube_id
54 schema:value 866becd1da9b72a9be38d8bdc85950a278b6a14112b5efc1940f99f3d30e463e
55 rdf:type schema:PropertyValue
56 N31efb4ea711746199979cb2b416ff12b rdf:first sg:person.010100014654.26
57 rdf:rest rdf:nil
58 N588f1d85939e480ba1aff67a282eff34 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 N9942f228b43d4217a7989ed02e8c96f1 schema:name dimensions_id
61 schema:value pub.1110227072
62 rdf:type schema:PropertyValue
63 Nb8a8108107aa4118bcfb757c8487673d schema:issueNumber 4
64 rdf:type schema:PublicationIssue
65 Ndc49bee604f04436a2566ada68c8f76b schema:volumeNumber 47
66 rdf:type schema:PublicationVolume
67 Nf7a7c1b798f24a8c93f923c3812408bd rdf:first sg:person.011154547466.96
68 rdf:rest N08f51ab4b54747f681b316820a7d2c99
69 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
70 schema:name Information and Computing Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
73 schema:name Artificial Intelligence and Image Processing
74 rdf:type schema:DefinedTerm
75 sg:journal.1136874 schema:issn 0255-660X
76 0974-3006
77 schema:name Journal of the Indian Society of Remote Sensing
78 rdf:type schema:Periodical
79 sg:person.010100014654.26 schema:affiliation https://www.grid.ac/institutes/grid.417965.8
80 schema:familyName Lohani
81 schema:givenName Bharat
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010100014654.26
83 rdf:type schema:Person
84 sg:person.011154547466.96 schema:affiliation https://www.grid.ac/institutes/grid.417965.8
85 schema:familyName Goel
86 schema:givenName Salil
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011154547466.96
88 rdf:type schema:Person
89 sg:person.01305034032.55 schema:affiliation https://www.grid.ac/institutes/grid.1017.7
90 schema:familyName Kealy
91 schema:givenName Allison
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305034032.55
93 rdf:type schema:Person
94 https://doi.org/10.1017/s0373463300008821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037961202
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1017/s0373463307004444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046786374
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1061/(asce)su.1943-5428.0000230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085313062
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1080/01431161.2018.1434331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100947021
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1109/78.668800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061230184
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1109/iros.2001.976240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094207900
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1109/jproc.2008.2008853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061296922
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1109/jstars.2013.2250921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061332930
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1109/lcomm.2010.091310.101060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061348760
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1109/lsp.2003.822899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061376286
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1109/tac.1979.1101979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061472534
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1109/tgrs.2008.2008720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061610643
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1109/tgrs.2008.2009763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061610665
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1109/tgrs.2009.2015657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061610982
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1109/tgrs.2011.2167339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061612048
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1109/tgrs.2013.2265295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061613012
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1109/tgrs.2014.2308208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061613394
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1109/tro.2006.878957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061784665
129 rdf:type schema:CreativeWork
130 https://doi.org/10.33012/2017.15217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110550660
131 rdf:type schema:CreativeWork
132 https://doi.org/10.3390/jsan7040042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107149323
133 rdf:type schema:CreativeWork
134 https://doi.org/10.5194/isprsannals-iii-1-183-2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072675556
135 rdf:type schema:CreativeWork
136 https://www.grid.ac/institutes/grid.1017.7 schema:alternateName RMIT University
137 schema:name Department of Geospatial Science, RMIT University, Melbourne, Australia
138 rdf:type schema:Organization
139 https://www.grid.ac/institutes/grid.417965.8 schema:alternateName Indian Institute of Technology Kanpur
140 schema:name Geoinformatics Laboratory, Department of Civil Engineering, Indian Institute of Technology Kanpur, 208 016, Kanpur, India
141 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...