Oasis Landscape Pattern Dynamics in Manas River Watershed Based on Remote Sensing and Spatial Metrics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01

AUTHORS

Bin Wang, Yanxia Li, Siyuan Wang, Changzheng Liu, Guanhua Zhu, Li Liu

ABSTRACT

Constant alterations of oasis landscape pattern, triggered by specific natural and human driving forces, have aroused some heated discussions in the field of regional environmental change research especially in arid areas. In this study, the Normalized Difference Vegetation Index and the Soil Brightness Index have been selected to successfully identify discrete land cover classes derived from a series of Landsat satellite images of Manas River watershed in 1989, 1998, and 2014. FRAGSTATS and principal components analysis were used to recognize independent components of landscape structure. Nine land cover classes combined with ten landscape metrics indicated variations in the composition and configuration of landscape pattern. Results related to historical data were analyzed to identify driving forces, mainly including population growth, agricultural modernization, urbanization, and water resource provision. The results revealed a trend toward less landscape fragmentation, as indicated by a steady decrease in the number of patches as well as an increase in mean patch size and contagion. To be more specific, we found substantial increases in cropland (72.3%) as well as built-up land (43.7%) with larger and more compact patches, while water (64.1%), snow cover (52.0%), and saline–alkali soil (48.5%) dropped sharply. Our findings suggested that population influx and reclamation of saline–alkali soil were two major driving forces critical to those landscape pattern changes. More... »

PAGES

1-11

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12524-018-0881-0

DOI

http://dx.doi.org/10.1007/s12524-018-0881-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1109791605


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0503", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Soil Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Beijing Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.181531.f", 
          "name": [
            "School of Civil Engineering, Beijing Jiaotong University, No.3 Shangyuancun, Haidian District, 100044, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Bin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.181531.f", 
          "name": [
            "School of Civil Engineering, Beijing Jiaotong University, No.3 Shangyuancun, Haidian District, 100044, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Yanxia", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Remote Sensing and Digital Earth", 
          "id": "https://www.grid.ac/institutes/grid.458443.a", 
          "name": [
            "Chinese Academy of Sciences, Institute of Remote Sensing Applications, No.9 Dengzhuang South Road, Haidian District, 100094, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Siyuan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shihezi University", 
          "id": "https://www.grid.ac/institutes/grid.411680.a", 
          "name": [
            "College of Information Science and Technology, Shihezi University, No.4 North Road, 832003, Shihezi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Changzheng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.181531.f", 
          "name": [
            "School of Civil Engineering, Beijing Jiaotong University, No.3 Shangyuancun, Haidian District, 100044, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Guanhua", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.181531.f", 
          "name": [
            "School of Civil Engineering, Beijing Jiaotong University, No.3 Shangyuancun, Haidian District, 100044, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Li", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s100219900011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001433293", 
          "https://doi.org/10.1007/s100219900011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-2046(02)00005-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002464111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolmodel.2014.08.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002964877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cities.2016.05.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003112008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431160600658149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003143049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11430-004-5348-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003584120", 
          "https://doi.org/10.1007/s11430-004-5348-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11430-004-5348-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003584120", 
          "https://doi.org/10.1007/s11430-004-5348-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolind.2007.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012098158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecoleng.2014.04.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012351946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1470-160x(02)00053-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013345379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1470-160x(02)00053-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013345379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.landurbplan.2005.12.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016196888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11442-014-1119-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017089606", 
          "https://doi.org/10.1007/s11442-014-1119-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jag.2014.05.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017205136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1941591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020351922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-2046(00)00112-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023216822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02791363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024321575", 
          "https://doi.org/10.1007/bf02791363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02791363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024321575", 
          "https://doi.org/10.1007/bf02791363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chnaes.2009.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025285398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00158551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031516566", 
          "https://doi.org/10.1007/bf00158551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00158551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031516566", 
          "https://doi.org/10.1007/bf00158551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.catena.2011.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035582108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/1540-9295(2004)002[0249:lcbhna]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035649941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.landurbplan.2009.10.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037779673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.quaint.2013.06.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038335755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apgeog.2013.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038347744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.proenv.2012.01.366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041469991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolind.2007.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043901455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-1963(03)00002-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044065362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-1963(03)00002-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044065362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolind.2012.07.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045440959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.landurbplan.2010.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045590273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apgeog.2008.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046145972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12665-011-1029-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050044476", 
          "https://doi.org/10.1007/s12665-011-1029-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1071/rj07063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051101895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.landurbplan.2006.06.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051863338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s100400000108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053723954", 
          "https://doi.org/10.1007/s100400000108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1556/comec.9.2008.2.11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067885774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3189/172756407782871396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071117731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077965249", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.aob.a086972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083602227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2737/pnw-gtr-351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103750763"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01", 
    "datePublishedReg": "2019-01-01", 
    "description": "Constant alterations of oasis landscape pattern, triggered by specific natural and human driving forces, have aroused some heated discussions in the field of regional environmental change research especially in arid areas. In this study, the Normalized Difference Vegetation Index and the Soil Brightness Index have been selected to successfully identify discrete land cover classes derived from a series of Landsat satellite images of Manas River watershed in 1989, 1998, and 2014. FRAGSTATS and principal components analysis were used to recognize independent components of landscape structure. Nine land cover classes combined with ten landscape metrics indicated variations in the composition and configuration of landscape pattern. Results related to historical data were analyzed to identify driving forces, mainly including population growth, agricultural modernization, urbanization, and water resource provision. The results revealed a trend toward less landscape fragmentation, as indicated by a steady decrease in the number of patches as well as an increase in mean patch size and contagion. To be more specific, we found substantial increases in cropland (72.3%) as well as built-up land (43.7%) with larger and more compact patches, while water (64.1%), snow cover (52.0%), and saline\u2013alkali soil (48.5%) dropped sharply. Our findings suggested that population influx and reclamation of saline\u2013alkali soil were two major driving forces critical to those landscape pattern changes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12524-018-0881-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136874", 
        "issn": [
          "0255-660X", 
          "0974-3006"
        ], 
        "name": "Journal of the Indian Society of Remote Sensing", 
        "type": "Periodical"
      }
    ], 
    "name": "Oasis Landscape Pattern Dynamics in Manas River Watershed Based on Remote Sensing and Spatial Metrics", 
    "pagination": "1-11", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4abba2b0afcd0941af0da805edea4f03d1b60056a8fae4ea0d85634cc8b0e415"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12524-018-0881-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1109791605"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12524-018-0881-0", 
      "https://app.dimensions.ai/details/publication/pub.1109791605"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000610.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12524-018-0881-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12524-018-0881-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12524-018-0881-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12524-018-0881-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12524-018-0881-0'


 

This table displays all metadata directly associated to this object as RDF triples.

207 TRIPLES      21 PREDICATES      62 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12524-018-0881-0 schema:about anzsrc-for:05
2 anzsrc-for:0503
3 schema:author N2258f0c3ea0d49fc8d92f681dd8e43b0
4 schema:citation sg:pub.10.1007/bf00158551
5 sg:pub.10.1007/bf02791363
6 sg:pub.10.1007/s100219900011
7 sg:pub.10.1007/s100400000108
8 sg:pub.10.1007/s11430-004-5348-1
9 sg:pub.10.1007/s11442-014-1119-x
10 sg:pub.10.1007/s12665-011-1029-5
11 https://app.dimensions.ai/details/publication/pub.1077965249
12 https://doi.org/10.1016/j.apgeog.2008.10.004
13 https://doi.org/10.1016/j.apgeog.2013.02.005
14 https://doi.org/10.1016/j.catena.2011.06.001
15 https://doi.org/10.1016/j.chnaes.2009.04.001
16 https://doi.org/10.1016/j.cities.2016.05.012
17 https://doi.org/10.1016/j.ecoleng.2014.04.020
18 https://doi.org/10.1016/j.ecolind.2007.06.001
19 https://doi.org/10.1016/j.ecolind.2007.12.002
20 https://doi.org/10.1016/j.ecolind.2012.07.018
21 https://doi.org/10.1016/j.ecolmodel.2014.08.018
22 https://doi.org/10.1016/j.jag.2014.05.008
23 https://doi.org/10.1016/j.landurbplan.2005.12.004
24 https://doi.org/10.1016/j.landurbplan.2006.06.007
25 https://doi.org/10.1016/j.landurbplan.2009.10.005
26 https://doi.org/10.1016/j.landurbplan.2010.12.002
27 https://doi.org/10.1016/j.proenv.2012.01.366
28 https://doi.org/10.1016/j.quaint.2013.06.035
29 https://doi.org/10.1016/s0140-1963(03)00002-8
30 https://doi.org/10.1016/s0169-2046(00)00112-2
31 https://doi.org/10.1016/s0169-2046(02)00005-1
32 https://doi.org/10.1016/s1470-160x(02)00053-5
33 https://doi.org/10.1071/rj07063
34 https://doi.org/10.1080/01431160600658149
35 https://doi.org/10.1093/oxfordjournals.aob.a086972
36 https://doi.org/10.1556/comec.9.2008.2.11
37 https://doi.org/10.1890/1540-9295(2004)002[0249:lcbhna]2.0.co;2
38 https://doi.org/10.2307/1941591
39 https://doi.org/10.2737/pnw-gtr-351
40 https://doi.org/10.3189/172756407782871396
41 schema:datePublished 2019-01
42 schema:datePublishedReg 2019-01-01
43 schema:description Constant alterations of oasis landscape pattern, triggered by specific natural and human driving forces, have aroused some heated discussions in the field of regional environmental change research especially in arid areas. In this study, the Normalized Difference Vegetation Index and the Soil Brightness Index have been selected to successfully identify discrete land cover classes derived from a series of Landsat satellite images of Manas River watershed in 1989, 1998, and 2014. FRAGSTATS and principal components analysis were used to recognize independent components of landscape structure. Nine land cover classes combined with ten landscape metrics indicated variations in the composition and configuration of landscape pattern. Results related to historical data were analyzed to identify driving forces, mainly including population growth, agricultural modernization, urbanization, and water resource provision. The results revealed a trend toward less landscape fragmentation, as indicated by a steady decrease in the number of patches as well as an increase in mean patch size and contagion. To be more specific, we found substantial increases in cropland (72.3%) as well as built-up land (43.7%) with larger and more compact patches, while water (64.1%), snow cover (52.0%), and saline–alkali soil (48.5%) dropped sharply. Our findings suggested that population influx and reclamation of saline–alkali soil were two major driving forces critical to those landscape pattern changes.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree false
47 schema:isPartOf sg:journal.1136874
48 schema:name Oasis Landscape Pattern Dynamics in Manas River Watershed Based on Remote Sensing and Spatial Metrics
49 schema:pagination 1-11
50 schema:productId N087a3cffab94459f8a2b848a62504f7f
51 Nb993e0eab93240b0a306bf3887d68d0a
52 Nd6cf84c0901f4eb4bad5a3f17447a57c
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109791605
54 https://doi.org/10.1007/s12524-018-0881-0
55 schema:sdDatePublished 2019-04-10T15:15
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher Nb2c2b736a81a41919be48e889437091c
58 schema:url https://link.springer.com/10.1007%2Fs12524-018-0881-0
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N087a3cffab94459f8a2b848a62504f7f schema:name doi
63 schema:value 10.1007/s12524-018-0881-0
64 rdf:type schema:PropertyValue
65 N1d51625f292740a3b9c79d3a6bdb833e schema:affiliation https://www.grid.ac/institutes/grid.181531.f
66 schema:familyName Li
67 schema:givenName Yanxia
68 rdf:type schema:Person
69 N2258f0c3ea0d49fc8d92f681dd8e43b0 rdf:first N48476cd8a34e41168157a8aba5cf7c4a
70 rdf:rest Nc4831a3f5ea046f3bbae4dce1730b01e
71 N3b5db956b7cb470295d2db5bec3a5f64 schema:affiliation https://www.grid.ac/institutes/grid.181531.f
72 schema:familyName Zhu
73 schema:givenName Guanhua
74 rdf:type schema:Person
75 N48476cd8a34e41168157a8aba5cf7c4a schema:affiliation https://www.grid.ac/institutes/grid.181531.f
76 schema:familyName Wang
77 schema:givenName Bin
78 rdf:type schema:Person
79 N5445d9b0944a4c22a2ea77895b30bf61 schema:affiliation https://www.grid.ac/institutes/grid.411680.a
80 schema:familyName Liu
81 schema:givenName Changzheng
82 rdf:type schema:Person
83 N7009632551a741559c2496a6fd8b3ee1 rdf:first N3b5db956b7cb470295d2db5bec3a5f64
84 rdf:rest Nd1d92023876d4920b1093643736edbcb
85 N9aa9649bf6344b8fa82a4400150dab0e schema:affiliation https://www.grid.ac/institutes/grid.181531.f
86 schema:familyName Liu
87 schema:givenName Li
88 rdf:type schema:Person
89 Nb2c2b736a81a41919be48e889437091c schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 Nb993e0eab93240b0a306bf3887d68d0a schema:name dimensions_id
92 schema:value pub.1109791605
93 rdf:type schema:PropertyValue
94 Nc4831a3f5ea046f3bbae4dce1730b01e rdf:first N1d51625f292740a3b9c79d3a6bdb833e
95 rdf:rest Ne9be02623f0a45038b200d4e7924ca1b
96 Nc59c967995f74763a1820d55fcbdac53 schema:affiliation https://www.grid.ac/institutes/grid.458443.a
97 schema:familyName Wang
98 schema:givenName Siyuan
99 rdf:type schema:Person
100 Nd1d92023876d4920b1093643736edbcb rdf:first N9aa9649bf6344b8fa82a4400150dab0e
101 rdf:rest rdf:nil
102 Nd6cf84c0901f4eb4bad5a3f17447a57c schema:name readcube_id
103 schema:value 4abba2b0afcd0941af0da805edea4f03d1b60056a8fae4ea0d85634cc8b0e415
104 rdf:type schema:PropertyValue
105 Ne9be02623f0a45038b200d4e7924ca1b rdf:first Nc59c967995f74763a1820d55fcbdac53
106 rdf:rest Nf00a5261f3584ebca776c88da77470ea
107 Nf00a5261f3584ebca776c88da77470ea rdf:first N5445d9b0944a4c22a2ea77895b30bf61
108 rdf:rest N7009632551a741559c2496a6fd8b3ee1
109 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
110 schema:name Environmental Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0503 schema:inDefinedTermSet anzsrc-for:
113 schema:name Soil Sciences
114 rdf:type schema:DefinedTerm
115 sg:journal.1136874 schema:issn 0255-660X
116 0974-3006
117 schema:name Journal of the Indian Society of Remote Sensing
118 rdf:type schema:Periodical
119 sg:pub.10.1007/bf00158551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031516566
120 https://doi.org/10.1007/bf00158551
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/bf02791363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024321575
123 https://doi.org/10.1007/bf02791363
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s100219900011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001433293
126 https://doi.org/10.1007/s100219900011
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s100400000108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053723954
129 https://doi.org/10.1007/s100400000108
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s11430-004-5348-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003584120
132 https://doi.org/10.1007/s11430-004-5348-1
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s11442-014-1119-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017089606
135 https://doi.org/10.1007/s11442-014-1119-x
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s12665-011-1029-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050044476
138 https://doi.org/10.1007/s12665-011-1029-5
139 rdf:type schema:CreativeWork
140 https://app.dimensions.ai/details/publication/pub.1077965249 schema:CreativeWork
141 https://doi.org/10.1016/j.apgeog.2008.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046145972
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.apgeog.2013.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038347744
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.catena.2011.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035582108
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.chnaes.2009.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025285398
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.cities.2016.05.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003112008
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.ecoleng.2014.04.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012351946
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.ecolind.2007.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043901455
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.ecolind.2007.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012098158
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.ecolind.2012.07.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045440959
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.ecolmodel.2014.08.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002964877
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.jag.2014.05.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017205136
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.landurbplan.2005.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016196888
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.landurbplan.2006.06.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051863338
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.landurbplan.2009.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037779673
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.landurbplan.2010.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045590273
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.proenv.2012.01.366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041469991
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.quaint.2013.06.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038335755
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/s0140-1963(03)00002-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044065362
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/s0169-2046(00)00112-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023216822
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/s0169-2046(02)00005-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002464111
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/s1470-160x(02)00053-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013345379
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1071/rj07063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051101895
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1080/01431160600658149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003143049
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1093/oxfordjournals.aob.a086972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083602227
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1556/comec.9.2008.2.11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067885774
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1890/1540-9295(2004)002[0249:lcbhna]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035649941
192 rdf:type schema:CreativeWork
193 https://doi.org/10.2307/1941591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020351922
194 rdf:type schema:CreativeWork
195 https://doi.org/10.2737/pnw-gtr-351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103750763
196 rdf:type schema:CreativeWork
197 https://doi.org/10.3189/172756407782871396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071117731
198 rdf:type schema:CreativeWork
199 https://www.grid.ac/institutes/grid.181531.f schema:alternateName Beijing Jiaotong University
200 schema:name School of Civil Engineering, Beijing Jiaotong University, No.3 Shangyuancun, Haidian District, 100044, Beijing, China
201 rdf:type schema:Organization
202 https://www.grid.ac/institutes/grid.411680.a schema:alternateName Shihezi University
203 schema:name College of Information Science and Technology, Shihezi University, No.4 North Road, 832003, Shihezi, China
204 rdf:type schema:Organization
205 https://www.grid.ac/institutes/grid.458443.a schema:alternateName Institute of Remote Sensing and Digital Earth
206 schema:name Chinese Academy of Sciences, Institute of Remote Sensing Applications, No.9 Dengzhuang South Road, Haidian District, 100094, Beijing, China
207 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...