Multi criteria analysis for flood hazard mapping using GIS techniques: a case study of Ghaghara River basin in Uttar Pradesh, ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-04-02

AUTHORS

Ajay Kumar Arya, Ajay Pratap Singh

ABSTRACT

Flooding is one of the major issues in the low lying area of Indo-Gangetic Plain. The Ghaghara basin witnesses the floods every year in Indian sub-continent and has caused loss of numerous lives and land for several decades. It may not be stopped but can be preventive. The present study is an attempt to initiate the flood risk zonation by defining multiple criteria for evaluating this major issue in Ghaghara basin, Uttar Pradesh, India. The work was done using Geographic Information Systems (GIS), Remote sensing (RS) data of (Linear Imaging Self Scanning) LISS III, SRTM (Shuttle Radar Topography Mission) data, and Survey of India (SOI) toposheet. The yearly average interpolated rainfall and multiple themes like slope, micro-watersheds, drainage density, land use/land cover (LULC), soil moisture, and soil surface texture were used to delineate the flood hazard risk zonation map. The study identified promising results for the establishment and categorization of flood risk zones into very low hazard risk zone (4%), low hazard risk zone (8.5%), moderate hazard risk zone (23.6%), high hazard risk zone (42%), and very high risk zones (21.9%). It is estimated on the basis of the study that ~27,490 localities were influenced by floods along the major channels, i.e., Ghaghara, Sarda, and Rapti. The results of this study could allow better relief operations and reduce the risk of flooding. More... »

PAGES

656

References to SciGraph publications

  • 2007-06-13. Enhancing the human benefits of flood warnings in NATURAL HAZARDS
  • 2013-04-16. An Integrated Approach to Flood Risk Management: A Case Study of Navaluenga (Central Spain) in WATER RESOURCES MANAGEMENT
  • 2017-05-19. Assessment of heavy metal contamination in the sediment of the River Ghaghara, a major tributary of the River Ganga in Northern India in APPLIED WATER SCIENCE
  • 2020-11-13. Application of modeling based on fuzzy logic with multi-criteria method in determining appropriate municipal landfill sites (case study: Kerman City) in ARABIAN JOURNAL OF GEOSCIENCES
  • 2008-12. Flood risk analysis in the Kosi river basin, north Bihar using multi-parametric approach of Analytical Hierarchy Process (AHP) in JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING
  • 2020-02-13. Morphometric Analysis of Ghaghara River Basin, India, Using SRTM Data and GIS in JOURNAL OF THE GEOLOGICAL SOCIETY OF INDIA
  • 1993-04. A multicriteria model for the location of solid waste transfer stations: The case of Ashdod, Israel in GEOJOURNAL
  • 2015-01. Climatically induced levee break and flood risk management of the Gorakhpur region, Rapti River basin, Ganga Plain, India in JOURNAL OF THE GEOLOGICAL SOCIETY OF INDIA
  • 2013-02-02. Flood Hazards Mitigation Analysis Using Remote Sensing and GIS: Correspondence with Town Planning Scheme in WATER RESOURCES MANAGEMENT
  • 2011. Flood Hazard and Risk Assessment Using GIS and Remote Sensing in Fogera Woreda, Northwest Ethiopia in NILE RIVER BASIN
  • 2013-03-18. Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (AHP) in NATURAL HAZARDS
  • 2015-03-17. Flood hazard assessment in the Kujukuri Plain of Chiba Prefecture, Japan, based on GIS and multicriteria decision analysis in NATURAL HAZARDS
  • 2020-11-26. Determination of the most appropriate tools of multi-criteria decision analysis for underground mining method selection—a case study in ARABIAN JOURNAL OF GEOSCIENCES
  • 2020-08-15. A Multi Criteria Approach for Morpho-tectonic Evaluation of Sai River Basin in Uttar Pradesh in JOURNAL OF THE GEOLOGICAL SOCIETY OF INDIA
  • 2018-01-03. Ghaghara River System—Its Current Status and Value to Society in THE INDIAN RIVERS
  • 2011-02-16. Characterizing Monsoonal Variation on Water Quality Index of River Mahi in India using Geographical Information System in EXPOSURE AND HEALTH
  • 2009-03. Climate Change and Health in Sub-Saharan Africa: A Case-Based Perspective in ECOHEALTH
  • 2020-09-11. Flood susceptibility prediction using four machine learning techniques and comparison of their performance at Wadi Qena Basin, Egypt in NATURAL HAZARDS
  • 2016-08-11. Satellite remote sensing and GIS-based multi-criteria analysis for flood hazard mapping in NATURAL HAZARDS
  • 2020-05-06. Landslide Occurrences Along Lineaments on NH-154A, Chamba, Himachal Pradesh; Extracted from Satellite Data Landsat 8, India in JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING
  • 2019-08-30. Effects of Land Cover Change on Surface Runoff Using GIS and Remote Sensing: A Case Study Duhok Sub-basin in ENVIRONMENTAL REMOTE SENSING AND GIS IN IRAQ
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12517-021-06971-1

    DOI

    http://dx.doi.org/10.1007/s12517-021-06971-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1136888111


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Geography and Environmental Geoscience", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Geology, University of Lucknow, 226007, Lucknow, India", 
              "id": "http://www.grid.ac/institutes/grid.411488.0", 
              "name": [
                "Department of Geology, University of Lucknow, 226007, Lucknow, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Arya", 
            "givenName": "Ajay Kumar", 
            "id": "sg:person.07656674010.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07656674010.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Geology, University of Lucknow, 226007, Lucknow, India", 
              "id": "http://www.grid.ac/institutes/grid.411488.0", 
              "name": [
                "Department of Geology, University of Lucknow, 226007, Lucknow, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Singh", 
            "givenName": "Ajay Pratap", 
            "id": "sg:person.010322417521.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010322417521.88"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11069-020-04296-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1130786966", 
              "https://doi.org/10.1007/s11069-020-04296-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12403-011-0038-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012697219", 
              "https://doi.org/10.1007/s12403-011-0038-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11069-007-9137-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045216192", 
              "https://doi.org/10.1007/s11069-007-9137-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12517-020-06213-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1132631556", 
              "https://doi.org/10.1007/s12517-020-06213-w"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11269-013-0332-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001052243", 
              "https://doi.org/10.1007/s11269-013-0332-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12524-008-0034-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041545404", 
              "https://doi.org/10.1007/s12524-008-0034-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13201-017-0572-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085450773", 
              "https://doi.org/10.1007/s13201-017-0572-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-007-0689-7_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016394878", 
              "https://doi.org/10.1007/978-94-007-0689-7_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12594-020-1406-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124864515", 
              "https://doi.org/10.1007/s12594-020-1406-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11069-016-2504-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025704411", 
              "https://doi.org/10.1007/s11069-016-2504-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11269-013-0291-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050911439", 
              "https://doi.org/10.1007/s11269-013-0291-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11069-015-1699-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038736570", 
              "https://doi.org/10.1007/s11069-015-1699-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12594-015-0195-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027623883", 
              "https://doi.org/10.1007/s12594-015-0195-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11069-013-0639-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018054786", 
              "https://doi.org/10.1007/s11069-013-0639-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-21344-2_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1120692464", 
              "https://doi.org/10.1007/978-3-030-21344-2_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12517-020-06233-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1132943799", 
              "https://doi.org/10.1007/s12517-020-06233-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00807540", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045821164", 
              "https://doi.org/10.1007/bf00807540"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12594-020-1525-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1130139323", 
              "https://doi.org/10.1007/s12594-020-1525-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12524-020-01113-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1127415971", 
              "https://doi.org/10.1007/s12524-020-01113-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10393-009-0222-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046847439", 
              "https://doi.org/10.1007/s10393-009-0222-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-981-10-2984-4_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100150822", 
              "https://doi.org/10.1007/978-981-10-2984-4_12"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-04-02", 
        "datePublishedReg": "2021-04-02", 
        "description": "Flooding is one of the major issues in the low lying area of Indo-Gangetic Plain. The Ghaghara basin witnesses the floods every year in Indian sub-continent and has caused loss of numerous lives and land for several decades. It may not be stopped but can be preventive. The present study is an attempt to initiate the flood risk zonation by defining multiple criteria for evaluating this major issue in Ghaghara basin, Uttar Pradesh, India. The work was done using Geographic Information Systems (GIS), Remote sensing (RS) data of (Linear Imaging Self Scanning) LISS III, SRTM (Shuttle Radar Topography Mission) data, and Survey of India (SOI) toposheet. The yearly average interpolated rainfall and multiple themes like slope, micro-watersheds, drainage density, land use/land cover (LULC), soil moisture, and soil surface texture were used to delineate the flood hazard risk zonation map. The study identified promising results for the establishment and categorization of flood risk zones into very low hazard risk zone (4%), low hazard risk zone (8.5%), moderate hazard risk zone (23.6%), high hazard risk zone (42%), and very high risk zones (21.9%). It is estimated on the basis of the study that ~27,490 localities were influenced by floods along the major channels, i.e., Ghaghara, Sarda, and Rapti. The results of this study could allow better relief operations and reduce the risk of flooding.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s12517-021-06971-1", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1135927", 
            "issn": [
              "1866-7511", 
              "1866-7538"
            ], 
            "name": "Arabian Journal of Geosciences", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "14"
          }
        ], 
        "keywords": [
          "land use/land cover", 
          "risk zones", 
          "flood hazard mapping", 
          "flood risk zones", 
          "risk of flooding", 
          "Indo-Gangetic Plain", 
          "geographic information system", 
          "risk zonation map", 
          "remote sensing data", 
          "soil surface texture", 
          "drainage density", 
          "India toposheets", 
          "River Basin", 
          "zonation map", 
          "high-risk zones", 
          "hazard mapping", 
          "soil moisture", 
          "SRTM data", 
          "risk zonation", 
          "land cover", 
          "GIS techniques", 
          "basin", 
          "LISS III", 
          "sensing data", 
          "zone", 
          "yearly average", 
          "Uttar Pradesh", 
          "floods", 
          "major channel", 
          "flooding", 
          "numerous lives", 
          "surface texture", 
          "multi-criteria analysis", 
          "Ghaghara", 
          "toposheets", 
          "rainfall", 
          "zonation", 
          "Plain", 
          "Pradesh", 
          "India", 
          "cover", 
          "Rapti", 
          "moisture", 
          "major issue", 
          "slope", 
          "land", 
          "case study", 
          "localities", 
          "texture", 
          "data", 
          "area", 
          "maps", 
          "criteria analysis", 
          "mapping", 
          "information systems", 
          "average", 
          "operation", 
          "relief operations", 
          "density", 
          "promising results", 
          "Sarda", 
          "decades", 
          "results", 
          "channels", 
          "study", 
          "technique", 
          "system", 
          "years", 
          "work", 
          "survey", 
          "multiple criteria", 
          "issues", 
          "analysis", 
          "basis", 
          "establishment", 
          "loss", 
          "present study", 
          "attempt", 
          "criteria", 
          "multiple themes", 
          "life", 
          "risk", 
          "categorization", 
          "themes"
        ], 
        "name": "Multi criteria analysis for flood hazard mapping using GIS techniques: a case study of Ghaghara River basin in Uttar Pradesh, India", 
        "pagination": "656", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1136888111"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12517-021-06971-1"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12517-021-06971-1", 
          "https://app.dimensions.ai/details/publication/pub.1136888111"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T17:09", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_883.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s12517-021-06971-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12517-021-06971-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12517-021-06971-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12517-021-06971-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12517-021-06971-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    232 TRIPLES      21 PREDICATES      129 URIs      100 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12517-021-06971-1 schema:about anzsrc-for:04
    2 anzsrc-for:0406
    3 schema:author N2b0b2085027d42c0b478360e21656b4c
    4 schema:citation sg:pub.10.1007/978-3-030-21344-2_9
    5 sg:pub.10.1007/978-94-007-0689-7_9
    6 sg:pub.10.1007/978-981-10-2984-4_12
    7 sg:pub.10.1007/bf00807540
    8 sg:pub.10.1007/s10393-009-0222-4
    9 sg:pub.10.1007/s11069-007-9137-y
    10 sg:pub.10.1007/s11069-013-0639-5
    11 sg:pub.10.1007/s11069-015-1699-5
    12 sg:pub.10.1007/s11069-016-2504-9
    13 sg:pub.10.1007/s11069-020-04296-y
    14 sg:pub.10.1007/s11269-013-0291-6
    15 sg:pub.10.1007/s11269-013-0332-1
    16 sg:pub.10.1007/s12403-011-0038-7
    17 sg:pub.10.1007/s12517-020-06213-w
    18 sg:pub.10.1007/s12517-020-06233-6
    19 sg:pub.10.1007/s12524-008-0034-y
    20 sg:pub.10.1007/s12524-020-01113-8
    21 sg:pub.10.1007/s12594-015-0195-6
    22 sg:pub.10.1007/s12594-020-1406-3
    23 sg:pub.10.1007/s12594-020-1525-x
    24 sg:pub.10.1007/s13201-017-0572-y
    25 schema:datePublished 2021-04-02
    26 schema:datePublishedReg 2021-04-02
    27 schema:description Flooding is one of the major issues in the low lying area of Indo-Gangetic Plain. The Ghaghara basin witnesses the floods every year in Indian sub-continent and has caused loss of numerous lives and land for several decades. It may not be stopped but can be preventive. The present study is an attempt to initiate the flood risk zonation by defining multiple criteria for evaluating this major issue in Ghaghara basin, Uttar Pradesh, India. The work was done using Geographic Information Systems (GIS), Remote sensing (RS) data of (Linear Imaging Self Scanning) LISS III, SRTM (Shuttle Radar Topography Mission) data, and Survey of India (SOI) toposheet. The yearly average interpolated rainfall and multiple themes like slope, micro-watersheds, drainage density, land use/land cover (LULC), soil moisture, and soil surface texture were used to delineate the flood hazard risk zonation map. The study identified promising results for the establishment and categorization of flood risk zones into very low hazard risk zone (4%), low hazard risk zone (8.5%), moderate hazard risk zone (23.6%), high hazard risk zone (42%), and very high risk zones (21.9%). It is estimated on the basis of the study that ~27,490 localities were influenced by floods along the major channels, i.e., Ghaghara, Sarda, and Rapti. The results of this study could allow better relief operations and reduce the risk of flooding.
    28 schema:genre article
    29 schema:isAccessibleForFree false
    30 schema:isPartOf N15e17d5d415c4b0b977c1135b780c7d1
    31 N430ba6c7f8d74055ac70473b3bbab9f0
    32 sg:journal.1135927
    33 schema:keywords GIS techniques
    34 Ghaghara
    35 India
    36 India toposheets
    37 Indo-Gangetic Plain
    38 LISS III
    39 Plain
    40 Pradesh
    41 Rapti
    42 River Basin
    43 SRTM data
    44 Sarda
    45 Uttar Pradesh
    46 analysis
    47 area
    48 attempt
    49 average
    50 basin
    51 basis
    52 case study
    53 categorization
    54 channels
    55 cover
    56 criteria
    57 criteria analysis
    58 data
    59 decades
    60 density
    61 drainage density
    62 establishment
    63 flood hazard mapping
    64 flood risk zones
    65 flooding
    66 floods
    67 geographic information system
    68 hazard mapping
    69 high-risk zones
    70 information systems
    71 issues
    72 land
    73 land cover
    74 land use/land cover
    75 life
    76 localities
    77 loss
    78 major channel
    79 major issue
    80 mapping
    81 maps
    82 moisture
    83 multi-criteria analysis
    84 multiple criteria
    85 multiple themes
    86 numerous lives
    87 operation
    88 present study
    89 promising results
    90 rainfall
    91 relief operations
    92 remote sensing data
    93 results
    94 risk
    95 risk of flooding
    96 risk zonation
    97 risk zonation map
    98 risk zones
    99 sensing data
    100 slope
    101 soil moisture
    102 soil surface texture
    103 study
    104 surface texture
    105 survey
    106 system
    107 technique
    108 texture
    109 themes
    110 toposheets
    111 work
    112 yearly average
    113 years
    114 zonation
    115 zonation map
    116 zone
    117 schema:name Multi criteria analysis for flood hazard mapping using GIS techniques: a case study of Ghaghara River basin in Uttar Pradesh, India
    118 schema:pagination 656
    119 schema:productId N472a7f7e57574c039c7b3a87a6cd9f3b
    120 N4b4eb821f2c24ee3837ebbf0747ddd18
    121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1136888111
    122 https://doi.org/10.1007/s12517-021-06971-1
    123 schema:sdDatePublished 2022-08-04T17:09
    124 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    125 schema:sdPublisher N4290d14dabef4ac2a2ca3dd8c1d1914e
    126 schema:url https://doi.org/10.1007/s12517-021-06971-1
    127 sgo:license sg:explorer/license/
    128 sgo:sdDataset articles
    129 rdf:type schema:ScholarlyArticle
    130 N15e17d5d415c4b0b977c1135b780c7d1 schema:issueNumber 8
    131 rdf:type schema:PublicationIssue
    132 N2b0b2085027d42c0b478360e21656b4c rdf:first sg:person.07656674010.32
    133 rdf:rest N47ed09d9436b42228594d731ea936fe9
    134 N4290d14dabef4ac2a2ca3dd8c1d1914e schema:name Springer Nature - SN SciGraph project
    135 rdf:type schema:Organization
    136 N430ba6c7f8d74055ac70473b3bbab9f0 schema:volumeNumber 14
    137 rdf:type schema:PublicationVolume
    138 N472a7f7e57574c039c7b3a87a6cd9f3b schema:name doi
    139 schema:value 10.1007/s12517-021-06971-1
    140 rdf:type schema:PropertyValue
    141 N47ed09d9436b42228594d731ea936fe9 rdf:first sg:person.010322417521.88
    142 rdf:rest rdf:nil
    143 N4b4eb821f2c24ee3837ebbf0747ddd18 schema:name dimensions_id
    144 schema:value pub.1136888111
    145 rdf:type schema:PropertyValue
    146 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    147 schema:name Earth Sciences
    148 rdf:type schema:DefinedTerm
    149 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
    150 schema:name Physical Geography and Environmental Geoscience
    151 rdf:type schema:DefinedTerm
    152 sg:journal.1135927 schema:issn 1866-7511
    153 1866-7538
    154 schema:name Arabian Journal of Geosciences
    155 schema:publisher Springer Nature
    156 rdf:type schema:Periodical
    157 sg:person.010322417521.88 schema:affiliation grid-institutes:grid.411488.0
    158 schema:familyName Singh
    159 schema:givenName Ajay Pratap
    160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010322417521.88
    161 rdf:type schema:Person
    162 sg:person.07656674010.32 schema:affiliation grid-institutes:grid.411488.0
    163 schema:familyName Arya
    164 schema:givenName Ajay Kumar
    165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07656674010.32
    166 rdf:type schema:Person
    167 sg:pub.10.1007/978-3-030-21344-2_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120692464
    168 https://doi.org/10.1007/978-3-030-21344-2_9
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/978-94-007-0689-7_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016394878
    171 https://doi.org/10.1007/978-94-007-0689-7_9
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/978-981-10-2984-4_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100150822
    174 https://doi.org/10.1007/978-981-10-2984-4_12
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/bf00807540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045821164
    177 https://doi.org/10.1007/bf00807540
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1007/s10393-009-0222-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046847439
    180 https://doi.org/10.1007/s10393-009-0222-4
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/s11069-007-9137-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1045216192
    183 https://doi.org/10.1007/s11069-007-9137-y
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1007/s11069-013-0639-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018054786
    186 https://doi.org/10.1007/s11069-013-0639-5
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1007/s11069-015-1699-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038736570
    189 https://doi.org/10.1007/s11069-015-1699-5
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/s11069-016-2504-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025704411
    192 https://doi.org/10.1007/s11069-016-2504-9
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1007/s11069-020-04296-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1130786966
    195 https://doi.org/10.1007/s11069-020-04296-y
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/s11269-013-0291-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050911439
    198 https://doi.org/10.1007/s11269-013-0291-6
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/s11269-013-0332-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001052243
    201 https://doi.org/10.1007/s11269-013-0332-1
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1007/s12403-011-0038-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012697219
    204 https://doi.org/10.1007/s12403-011-0038-7
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1007/s12517-020-06213-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1132631556
    207 https://doi.org/10.1007/s12517-020-06213-w
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1007/s12517-020-06233-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132943799
    210 https://doi.org/10.1007/s12517-020-06233-6
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1007/s12524-008-0034-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1041545404
    213 https://doi.org/10.1007/s12524-008-0034-y
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1007/s12524-020-01113-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1127415971
    216 https://doi.org/10.1007/s12524-020-01113-8
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1007/s12594-015-0195-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027623883
    219 https://doi.org/10.1007/s12594-015-0195-6
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1007/s12594-020-1406-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124864515
    222 https://doi.org/10.1007/s12594-020-1406-3
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1007/s12594-020-1525-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1130139323
    225 https://doi.org/10.1007/s12594-020-1525-x
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1007/s13201-017-0572-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1085450773
    228 https://doi.org/10.1007/s13201-017-0572-y
    229 rdf:type schema:CreativeWork
    230 grid-institutes:grid.411488.0 schema:alternateName Department of Geology, University of Lucknow, 226007, Lucknow, India
    231 schema:name Department of Geology, University of Lucknow, 226007, Lucknow, India
    232 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...