A rate decline model for acidizing and fracturing wells in closed carbonate reservoirs View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Hu Yunpeng, Wang Lei, Ding Wei, Zhang Xiaoling, Su Penghui, Meng Weikang, Ma Ruoyu

ABSTRACT

Combined with micro-seismic exploration results, an unsteady production model for multi-branched fractures in bounded tight fractured reservoirs has been established in this paper, and by means of Laplace transform, point source integration, Stehfest numerical inversion, and semi-analytical solutions to the production model have been obtained. The accuracy of model simulation has been verified through the fitting analysis of the theoretical model and field production data. The influences of fracture branch number, inter-porosity flow coefficient, storage coefficient, branched fracture density, and drainage area on production have been analyzed. According to the calculation results, the larger the fracture branch number, the higher the decline rate in the early stage; in addition, the dimensionless production curves in the late stage coincided with each other; basically, inter-porosity flow coefficient affects the productivity of only the inter-porosity flow interval; the greater the inter-porosity flow coefficient, the higher the production; storage coefficient mainly affects the early productivity of volume-fractured wells; the greater the storage coefficient, the higher the early production, but the productivity decline rate is similar at different storage coefficients; fracture density mainly affects the early productivity of volume-fractured wells; the larger the fracture density, the smaller the productivity, but with the reduction of fracture density, the influence of fracture density on productivity is less obvious; a larger reservoir drainage radius leads to later entering of energy depletion stage. Much attention shall be paid to the optimization of productivity influence factors, and they shall be taken into account as comprehensively as possible in the actual production process. More... »

PAGES

249

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12517-019-4348-6

DOI

http://dx.doi.org/10.1007/s12517-019-4348-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113053779


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0914", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Resources Engineering and Extractive Metallurgy", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sinopec (China)", 
          "id": "https://www.grid.ac/institutes/grid.418531.a", 
          "name": [
            "CNPC Research Institute of Petroleum Exploration & Development (RIPED), Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yunpeng", 
        "givenName": "Hu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking University", 
          "id": "https://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "College of Engineering, Peking University, Beijing, China", 
            "Advanced Innovation Center, Peking University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lei", 
        "givenName": "Wang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sinopec (China)", 
          "id": "https://www.grid.ac/institutes/grid.418531.a", 
          "name": [
            "CNPC Research Institute of Petroleum Exploration & Development (RIPED), Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wei", 
        "givenName": "Ding", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sinopec (China)", 
          "id": "https://www.grid.ac/institutes/grid.418531.a", 
          "name": [
            "CNPC Research Institute of Petroleum Exploration & Development (RIPED), Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiaoling", 
        "givenName": "Zhang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sinopec (China)", 
          "id": "https://www.grid.ac/institutes/grid.418531.a", 
          "name": [
            "CNPC Research Institute of Petroleum Exploration & Development (RIPED), Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Penghui", 
        "givenName": "Su", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sinopec (China)", 
          "id": "https://www.grid.ac/institutes/grid.418531.a", 
          "name": [
            "CNPC Research Institute of Petroleum Exploration & Development (RIPED), Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weikang", 
        "givenName": "Meng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China University of Petroleum, Beijing", 
          "id": "https://www.grid.ac/institutes/grid.411519.9", 
          "name": [
            "China University of Petroleum, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ruoyu", 
        "givenName": "Ma", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11242-012-0084-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004259566", 
          "https://doi.org/10.1007/s11242-012-0084-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11242-014-0383-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029406034", 
          "https://doi.org/10.1007/s11242-014-0383-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-1694(00)00254-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037577864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/13409-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068949706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/104173-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096923655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/59537-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096938148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/119104-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096940627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/77689-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096955539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/130287-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096959463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/130252-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096962202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/132399-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096964039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/123006-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096981118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12517-018-3639-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104460511", 
          "https://doi.org/10.1007/s12517-018-3639-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12517-018-3639-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104460511", 
          "https://doi.org/10.1007/s12517-018-3639-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12517-018-3673-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105299185", 
          "https://doi.org/10.1007/s12517-018-3673-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12517-018-3673-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105299185", 
          "https://doi.org/10.1007/s12517-018-3673-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12517-018-3842-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106339539", 
          "https://doi.org/10.1007/s12517-018-3842-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12517-018-3973-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107708083", 
          "https://doi.org/10.1007/s12517-018-3973-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12517-018-3965-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107828816", 
          "https://doi.org/10.1007/s12517-018-3965-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Combined with micro-seismic exploration results, an unsteady production model for multi-branched fractures in bounded tight fractured reservoirs has been established in this paper, and by means of Laplace transform, point source integration, Stehfest numerical inversion, and semi-analytical solutions to the production model have been obtained. The accuracy of model simulation has been verified through the fitting analysis of the theoretical model and field production data. The influences of fracture branch number, inter-porosity flow coefficient, storage coefficient, branched fracture density, and drainage area on production have been analyzed. According to the calculation results, the larger the fracture branch number, the higher the decline rate in the early stage; in addition, the dimensionless production curves in the late stage coincided with each other; basically, inter-porosity flow coefficient affects the productivity of only the inter-porosity flow interval; the greater the inter-porosity flow coefficient, the higher the production; storage coefficient mainly affects the early productivity of volume-fractured wells; the greater the storage coefficient, the higher the early production, but the productivity decline rate is similar at different storage coefficients; fracture density mainly affects the early productivity of volume-fractured wells; the larger the fracture density, the smaller the productivity, but with the reduction of fracture density, the influence of fracture density on productivity is less obvious; a larger reservoir drainage radius leads to later entering of energy depletion stage. Much attention shall be paid to the optimization of productivity influence factors, and they shall be taken into account as comprehensively as possible in the actual production process.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12517-019-4348-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135927", 
        "issn": [
          "1866-7511", 
          "1866-7538"
        ], 
        "name": "Arabian Journal of Geosciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "A rate decline model for acidizing and fracturing wells in closed carbonate reservoirs", 
    "pagination": "249", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113053779"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12517-019-4348-6"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "59f4ae14989369355d721b18b98d82639a53f59ef4eeb2898b741a548e113f6a"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12517-019-4348-6", 
      "https://app.dimensions.ai/details/publication/pub.1113053779"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-16T06:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000377_0000000377/records_106803_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12517-019-4348-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12517-019-4348-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12517-019-4348-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12517-019-4348-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12517-019-4348-6'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12517-019-4348-6 schema:about anzsrc-for:09
2 anzsrc-for:0914
3 schema:author Nc786b57987c346049508c70343faffe8
4 schema:citation sg:pub.10.1007/s11242-012-0084-z
5 sg:pub.10.1007/s11242-014-0383-7
6 sg:pub.10.1007/s12517-018-3639-7
7 sg:pub.10.1007/s12517-018-3673-5
8 sg:pub.10.1007/s12517-018-3842-6
9 sg:pub.10.1007/s12517-018-3965-9
10 sg:pub.10.1007/s12517-018-3973-9
11 https://doi.org/10.1016/s0022-1694(00)00254-7
12 https://doi.org/10.2118/104173-ms
13 https://doi.org/10.2118/119104-ms
14 https://doi.org/10.2118/123006-ms
15 https://doi.org/10.2118/130252-ms
16 https://doi.org/10.2118/130287-ms
17 https://doi.org/10.2118/132399-ms
18 https://doi.org/10.2118/13409-pa
19 https://doi.org/10.2118/59537-ms
20 https://doi.org/10.2118/77689-ms
21 schema:datePublished 2019-04
22 schema:datePublishedReg 2019-04-01
23 schema:description Combined with micro-seismic exploration results, an unsteady production model for multi-branched fractures in bounded tight fractured reservoirs has been established in this paper, and by means of Laplace transform, point source integration, Stehfest numerical inversion, and semi-analytical solutions to the production model have been obtained. The accuracy of model simulation has been verified through the fitting analysis of the theoretical model and field production data. The influences of fracture branch number, inter-porosity flow coefficient, storage coefficient, branched fracture density, and drainage area on production have been analyzed. According to the calculation results, the larger the fracture branch number, the higher the decline rate in the early stage; in addition, the dimensionless production curves in the late stage coincided with each other; basically, inter-porosity flow coefficient affects the productivity of only the inter-porosity flow interval; the greater the inter-porosity flow coefficient, the higher the production; storage coefficient mainly affects the early productivity of volume-fractured wells; the greater the storage coefficient, the higher the early production, but the productivity decline rate is similar at different storage coefficients; fracture density mainly affects the early productivity of volume-fractured wells; the larger the fracture density, the smaller the productivity, but with the reduction of fracture density, the influence of fracture density on productivity is less obvious; a larger reservoir drainage radius leads to later entering of energy depletion stage. Much attention shall be paid to the optimization of productivity influence factors, and they shall be taken into account as comprehensively as possible in the actual production process.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N2f3fdb170f2f400a936862d77a903ba3
28 Nb0e7210a7ad648ceb5dc10f97982fb61
29 sg:journal.1135927
30 schema:name A rate decline model for acidizing and fracturing wells in closed carbonate reservoirs
31 schema:pagination 249
32 schema:productId N3ecb63f033e1413d90a599a6c1149d8d
33 N5e554a9e7310422e9217fa39a08f255e
34 N79a3bd1e9bc744e7902751c599c29976
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113053779
36 https://doi.org/10.1007/s12517-019-4348-6
37 schema:sdDatePublished 2019-04-16T06:21
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N044a8cf9a6a243088f11bf09bf7f78d5
40 schema:url https://link.springer.com/10.1007%2Fs12517-019-4348-6
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N044a8cf9a6a243088f11bf09bf7f78d5 schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 N09b6a6062ea94a95b238bbd32907c2c3 schema:affiliation https://www.grid.ac/institutes/grid.418531.a
47 schema:familyName Wei
48 schema:givenName Ding
49 rdf:type schema:Person
50 N0b09f76ed988453399d6ab8db4043741 rdf:first Ne9e27a3579874f7d8eb1520313dee6a8
51 rdf:rest Nbdf5b1617a8a4844823d6f2194c16260
52 N24dbbb9eea1340059828245f20fb2bff schema:affiliation https://www.grid.ac/institutes/grid.418531.a
53 schema:familyName Xiaoling
54 schema:givenName Zhang
55 rdf:type schema:Person
56 N2b8e5f10211a4bd684dcc22928fc74d1 rdf:first N24dbbb9eea1340059828245f20fb2bff
57 rdf:rest N9442cfaa414d4a92b24b3c2025e816a3
58 N2f3fdb170f2f400a936862d77a903ba3 schema:volumeNumber 12
59 rdf:type schema:PublicationVolume
60 N2f7a86637ba241758b7ff63fc06d8407 schema:affiliation https://www.grid.ac/institutes/grid.418531.a
61 schema:familyName Weikang
62 schema:givenName Meng
63 rdf:type schema:Person
64 N3ecb63f033e1413d90a599a6c1149d8d schema:name doi
65 schema:value 10.1007/s12517-019-4348-6
66 rdf:type schema:PropertyValue
67 N47098d175c5f4fed9085e0ed2f824e0c schema:affiliation https://www.grid.ac/institutes/grid.418531.a
68 schema:familyName Penghui
69 schema:givenName Su
70 rdf:type schema:Person
71 N5e554a9e7310422e9217fa39a08f255e schema:name dimensions_id
72 schema:value pub.1113053779
73 rdf:type schema:PropertyValue
74 N62b9186be2974c918250480c49b066c9 rdf:first Ne4402040ae4441edb0b4c8a00970b859
75 rdf:rest rdf:nil
76 N79a3bd1e9bc744e7902751c599c29976 schema:name readcube_id
77 schema:value 59f4ae14989369355d721b18b98d82639a53f59ef4eeb2898b741a548e113f6a
78 rdf:type schema:PropertyValue
79 N9442cfaa414d4a92b24b3c2025e816a3 rdf:first N47098d175c5f4fed9085e0ed2f824e0c
80 rdf:rest Nc9e52335a9cc4fd89c714f29a0574a1d
81 Nb0e7210a7ad648ceb5dc10f97982fb61 schema:issueNumber 7
82 rdf:type schema:PublicationIssue
83 Nbdf5b1617a8a4844823d6f2194c16260 rdf:first N09b6a6062ea94a95b238bbd32907c2c3
84 rdf:rest N2b8e5f10211a4bd684dcc22928fc74d1
85 Nc786b57987c346049508c70343faffe8 rdf:first Ndcf8ea3f298744fcbf16a6d24acdfad7
86 rdf:rest N0b09f76ed988453399d6ab8db4043741
87 Nc9e52335a9cc4fd89c714f29a0574a1d rdf:first N2f7a86637ba241758b7ff63fc06d8407
88 rdf:rest N62b9186be2974c918250480c49b066c9
89 Ndcf8ea3f298744fcbf16a6d24acdfad7 schema:affiliation https://www.grid.ac/institutes/grid.418531.a
90 schema:familyName Yunpeng
91 schema:givenName Hu
92 rdf:type schema:Person
93 Ne4402040ae4441edb0b4c8a00970b859 schema:affiliation https://www.grid.ac/institutes/grid.411519.9
94 schema:familyName Ruoyu
95 schema:givenName Ma
96 rdf:type schema:Person
97 Ne9e27a3579874f7d8eb1520313dee6a8 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
98 schema:familyName Lei
99 schema:givenName Wang
100 rdf:type schema:Person
101 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
102 schema:name Engineering
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0914 schema:inDefinedTermSet anzsrc-for:
105 schema:name Resources Engineering and Extractive Metallurgy
106 rdf:type schema:DefinedTerm
107 sg:journal.1135927 schema:issn 1866-7511
108 1866-7538
109 schema:name Arabian Journal of Geosciences
110 rdf:type schema:Periodical
111 sg:pub.10.1007/s11242-012-0084-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1004259566
112 https://doi.org/10.1007/s11242-012-0084-z
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s11242-014-0383-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029406034
115 https://doi.org/10.1007/s11242-014-0383-7
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s12517-018-3639-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104460511
118 https://doi.org/10.1007/s12517-018-3639-7
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s12517-018-3673-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105299185
121 https://doi.org/10.1007/s12517-018-3673-5
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s12517-018-3842-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106339539
124 https://doi.org/10.1007/s12517-018-3842-6
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s12517-018-3965-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107828816
127 https://doi.org/10.1007/s12517-018-3965-9
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s12517-018-3973-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107708083
130 https://doi.org/10.1007/s12517-018-3973-9
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/s0022-1694(00)00254-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037577864
133 rdf:type schema:CreativeWork
134 https://doi.org/10.2118/104173-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096923655
135 rdf:type schema:CreativeWork
136 https://doi.org/10.2118/119104-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096940627
137 rdf:type schema:CreativeWork
138 https://doi.org/10.2118/123006-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096981118
139 rdf:type schema:CreativeWork
140 https://doi.org/10.2118/130252-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096962202
141 rdf:type schema:CreativeWork
142 https://doi.org/10.2118/130287-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096959463
143 rdf:type schema:CreativeWork
144 https://doi.org/10.2118/132399-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096964039
145 rdf:type schema:CreativeWork
146 https://doi.org/10.2118/13409-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068949706
147 rdf:type schema:CreativeWork
148 https://doi.org/10.2118/59537-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096938148
149 rdf:type schema:CreativeWork
150 https://doi.org/10.2118/77689-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096955539
151 rdf:type schema:CreativeWork
152 https://www.grid.ac/institutes/grid.11135.37 schema:alternateName Peking University
153 schema:name Advanced Innovation Center, Peking University, Beijing, China
154 College of Engineering, Peking University, Beijing, China
155 rdf:type schema:Organization
156 https://www.grid.ac/institutes/grid.411519.9 schema:alternateName China University of Petroleum, Beijing
157 schema:name China University of Petroleum, Beijing, China
158 rdf:type schema:Organization
159 https://www.grid.ac/institutes/grid.418531.a schema:alternateName Sinopec (China)
160 schema:name CNPC Research Institute of Petroleum Exploration & Development (RIPED), Beijing, China
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...