Impact of river network type on the time of concentration View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-12

AUTHORS

Kichul Jung, Prashanth R. Marpu, Taha B. M. J. Ouarda

ABSTRACT

Time of concentration (Tc) is one of the frequently used parameters to characterize the response of a drainage basin to a rainfall event. Conceptually, it is the time runoff travels from the hydraulically most distant location in a basin to its outlet. Tc was found to vary depending on river basin characteristics such as slope, soil infiltration, and flow path. In this study, we investigate if the drainage network type information can be used as an input to hydrological models, by estimating the time of concentration separately for different network types. Sixty-eight basins which have areas ranging from 24 to 965 km2 in arid and non-arid regions of the USA are compared and the effect of climate is also analyzed. It is found that the slope of the linear relationship between Tc and the maximum hydraulic length of flow path shows different correlation coefficients ranging from 0.80 to 0.98 for different network types. It is observed that the slope of the regression line between Tc and the maximum hydraulic length of flow path is the lowest for dendritic networks (slope of 0.26), while pinnate networks have the steepest slope of the regression line (slope of 0.59). This indicates that the drainage network type has a direct impact on the hydrological behavior of the basin and can represent a direct input in hydrological modeling. More... »

PAGES

546

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12517-017-3323-3

DOI

http://dx.doi.org/10.1007/s12517-017-3323-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1099739528


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dankook University", 
          "id": "https://www.grid.ac/institutes/grid.411982.7", 
          "name": [
            "Department of Civil and Environmental Engineering, Dankook University, Gyeonggi-do, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jung", 
        "givenName": "Kichul", 
        "id": "sg:person.016461526461.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016461526461.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Khalifa University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.440568.b", 
          "name": [
            "Institute Center for Water and Environment (iWATER), Masdar Institute of Science and Technology, Abu Dhabi, UAE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marpu", 
        "givenName": "Prashanth R.", 
        "id": "sg:person.012065120725.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012065120725.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Quebec", 
          "id": "https://www.grid.ac/institutes/grid.265695.b", 
          "name": [
            "Institute Center for Water and Environment (iWATER), Masdar Institute of Science and Technology, Abu Dhabi, UAE", 
            "Hydro-climatology Lab, INRS-ETE, University of Quebec, Quebec, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ouarda", 
        "givenName": "Taha B. M. J.", 
        "id": "sg:person.011153270623.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011153270623.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1029/wr018i004p00877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001914753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomorph.2015.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002287721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0734-189x(84)80011-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003141024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2008wr007196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007638965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2008wr007490", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008227001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1475-2743.1993.tb00932.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011067825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2007wr006771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013189566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2014.11.068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015276918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12665-012-2172-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017093217", 
          "https://doi.org/10.1007/s12665-012-2172-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1694(69)90120-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026015198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1694(69)90120-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026015198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hyp.3360050107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028048264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomorph.2011.05.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030075977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02626667.2013.866712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031353428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1130/0016-7606(1983)94<80:gcottp>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038791229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4172/2165-784x.1000183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040491621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2011wr011501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041538672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0097807815030112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043255878", 
          "https://doi.org/10.1134/s0097807815030112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1130/0091-7613(1987)15<813:eorsod>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043713090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-011-0143-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044534327", 
          "https://doi.org/10.1007/s10584-011-0143-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2007jf000781", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045314697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02626669009492416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045463796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr015i006p01409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047440884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hyp.6846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048691270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1130/0016-7606(1945)56[275:edosat]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049350317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/tr032i004p00591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049408632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-1694(03)00019-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050894796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9429(1984)110:7(887)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057588761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9437(2005)131:4(383)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057594736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9437(2008)134:2(202)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057594999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)he.1943-5584.0000837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057634415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)ir.1943-4774.0000373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057636987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/623976", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058819758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.255.5046.826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062543464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1306/5d25c26d-16c1-11d7-8645000102c1865d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064942157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jaridenv.2017.04.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085098411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/esp.4172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085427873"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "Time of concentration (Tc) is one of the frequently used parameters to characterize the response of a drainage basin to a rainfall event. Conceptually, it is the time runoff travels from the hydraulically most distant location in a basin to its outlet. Tc was found to vary depending on river basin characteristics such as slope, soil infiltration, and flow path. In this study, we investigate if the drainage network type information can be used as an input to hydrological models, by estimating the time of concentration separately for different network types. Sixty-eight basins which have areas ranging from 24 to 965 km2 in arid and non-arid regions of the USA are compared and the effect of climate is also analyzed. It is found that the slope of the linear relationship between Tc and the maximum hydraulic length of flow path shows different correlation coefficients ranging from 0.80 to 0.98 for different network types. It is observed that the slope of the regression line between Tc and the maximum hydraulic length of flow path is the lowest for dendritic networks (slope of 0.26), while pinnate networks have the steepest slope of the regression line (slope of 0.59). This indicates that the drainage network type has a direct impact on the hydrological behavior of the basin and can represent a direct input in hydrological modeling.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12517-017-3323-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135927", 
        "issn": [
          "1866-7511", 
          "1866-7538"
        ], 
        "name": "Arabian Journal of Geosciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "24", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Impact of river network type on the time of concentration", 
    "pagination": "546", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8406436991fd0c1e625d2341c9d44206bb55d25fbd750a006fcadec17a3a9593"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12517-017-3323-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1099739528"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12517-017-3323-3", 
      "https://app.dimensions.ai/details/publication/pub.1099739528"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000603.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s12517-017-3323-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12517-017-3323-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12517-017-3323-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12517-017-3323-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12517-017-3323-3'


 

This table displays all metadata directly associated to this object as RDF triples.

193 TRIPLES      21 PREDICATES      63 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12517-017-3323-3 schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author N4861b88f9ce1408792d477fd3bab91b1
4 schema:citation sg:pub.10.1007/s10584-011-0143-4
5 sg:pub.10.1007/s12665-012-2172-3
6 sg:pub.10.1134/s0097807815030112
7 https://doi.org/10.1002/esp.4172
8 https://doi.org/10.1002/hyp.3360050107
9 https://doi.org/10.1002/hyp.6846
10 https://doi.org/10.1016/0022-1694(69)90120-6
11 https://doi.org/10.1016/j.geomorph.2011.05.014
12 https://doi.org/10.1016/j.geomorph.2015.03.004
13 https://doi.org/10.1016/j.jaridenv.2017.04.013
14 https://doi.org/10.1016/j.jhydrol.2014.11.068
15 https://doi.org/10.1016/s0022-1694(03)00019-2
16 https://doi.org/10.1016/s0734-189x(84)80011-0
17 https://doi.org/10.1029/2007jf000781
18 https://doi.org/10.1029/2007wr006771
19 https://doi.org/10.1029/2008wr007196
20 https://doi.org/10.1029/2008wr007490
21 https://doi.org/10.1029/2011wr011501
22 https://doi.org/10.1029/tr032i004p00591
23 https://doi.org/10.1029/wr015i006p01409
24 https://doi.org/10.1029/wr018i004p00877
25 https://doi.org/10.1061/(asce)0733-9429(1984)110:7(887)
26 https://doi.org/10.1061/(asce)0733-9437(2005)131:4(383)
27 https://doi.org/10.1061/(asce)0733-9437(2008)134:2(202)
28 https://doi.org/10.1061/(asce)he.1943-5584.0000837
29 https://doi.org/10.1061/(asce)ir.1943-4774.0000373
30 https://doi.org/10.1080/02626667.2013.866712
31 https://doi.org/10.1080/02626669009492416
32 https://doi.org/10.1086/623976
33 https://doi.org/10.1111/j.1475-2743.1993.tb00932.x
34 https://doi.org/10.1126/science.255.5046.826
35 https://doi.org/10.1130/0016-7606(1945)56[275:edosat]2.0.co;2
36 https://doi.org/10.1130/0016-7606(1983)94<80:gcottp>2.0.co;2
37 https://doi.org/10.1130/0091-7613(1987)15<813:eorsod>2.0.co;2
38 https://doi.org/10.1306/5d25c26d-16c1-11d7-8645000102c1865d
39 https://doi.org/10.4172/2165-784x.1000183
40 schema:datePublished 2017-12
41 schema:datePublishedReg 2017-12-01
42 schema:description Time of concentration (Tc) is one of the frequently used parameters to characterize the response of a drainage basin to a rainfall event. Conceptually, it is the time runoff travels from the hydraulically most distant location in a basin to its outlet. Tc was found to vary depending on river basin characteristics such as slope, soil infiltration, and flow path. In this study, we investigate if the drainage network type information can be used as an input to hydrological models, by estimating the time of concentration separately for different network types. Sixty-eight basins which have areas ranging from 24 to 965 km2 in arid and non-arid regions of the USA are compared and the effect of climate is also analyzed. It is found that the slope of the linear relationship between Tc and the maximum hydraulic length of flow path shows different correlation coefficients ranging from 0.80 to 0.98 for different network types. It is observed that the slope of the regression line between Tc and the maximum hydraulic length of flow path is the lowest for dendritic networks (slope of 0.26), while pinnate networks have the steepest slope of the regression line (slope of 0.59). This indicates that the drainage network type has a direct impact on the hydrological behavior of the basin and can represent a direct input in hydrological modeling.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree false
46 schema:isPartOf N46badf277ed8493c8372c5da694c57a6
47 Na3cf8758ad0c4f5cb22250bb58d36e75
48 sg:journal.1135927
49 schema:name Impact of river network type on the time of concentration
50 schema:pagination 546
51 schema:productId N50b85c28564b4789b39edc68c7744859
52 Na36012af2dc7444486f68ee03447d002
53 Nc461758cb7af43b08c245379c6ab6fa8
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099739528
55 https://doi.org/10.1007/s12517-017-3323-3
56 schema:sdDatePublished 2019-04-10T16:55
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N4ab08fc32b964be9a78899dae5be9223
59 schema:url http://link.springer.com/10.1007/s12517-017-3323-3
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N46badf277ed8493c8372c5da694c57a6 schema:volumeNumber 10
64 rdf:type schema:PublicationVolume
65 N4861b88f9ce1408792d477fd3bab91b1 rdf:first sg:person.016461526461.23
66 rdf:rest Na7ed9c7d717648fbbb78659b1cca43c1
67 N4ab08fc32b964be9a78899dae5be9223 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N50b85c28564b4789b39edc68c7744859 schema:name doi
70 schema:value 10.1007/s12517-017-3323-3
71 rdf:type schema:PropertyValue
72 N93263a625edb4ba99282faff7303539c rdf:first sg:person.011153270623.25
73 rdf:rest rdf:nil
74 Na36012af2dc7444486f68ee03447d002 schema:name dimensions_id
75 schema:value pub.1099739528
76 rdf:type schema:PropertyValue
77 Na3cf8758ad0c4f5cb22250bb58d36e75 schema:issueNumber 24
78 rdf:type schema:PublicationIssue
79 Na7ed9c7d717648fbbb78659b1cca43c1 rdf:first sg:person.012065120725.38
80 rdf:rest N93263a625edb4ba99282faff7303539c
81 Nc461758cb7af43b08c245379c6ab6fa8 schema:name readcube_id
82 schema:value 8406436991fd0c1e625d2341c9d44206bb55d25fbd750a006fcadec17a3a9593
83 rdf:type schema:PropertyValue
84 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
85 schema:name Earth Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
88 schema:name Physical Geography and Environmental Geoscience
89 rdf:type schema:DefinedTerm
90 sg:journal.1135927 schema:issn 1866-7511
91 1866-7538
92 schema:name Arabian Journal of Geosciences
93 rdf:type schema:Periodical
94 sg:person.011153270623.25 schema:affiliation https://www.grid.ac/institutes/grid.265695.b
95 schema:familyName Ouarda
96 schema:givenName Taha B. M. J.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011153270623.25
98 rdf:type schema:Person
99 sg:person.012065120725.38 schema:affiliation https://www.grid.ac/institutes/grid.440568.b
100 schema:familyName Marpu
101 schema:givenName Prashanth R.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012065120725.38
103 rdf:type schema:Person
104 sg:person.016461526461.23 schema:affiliation https://www.grid.ac/institutes/grid.411982.7
105 schema:familyName Jung
106 schema:givenName Kichul
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016461526461.23
108 rdf:type schema:Person
109 sg:pub.10.1007/s10584-011-0143-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044534327
110 https://doi.org/10.1007/s10584-011-0143-4
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s12665-012-2172-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017093217
113 https://doi.org/10.1007/s12665-012-2172-3
114 rdf:type schema:CreativeWork
115 sg:pub.10.1134/s0097807815030112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043255878
116 https://doi.org/10.1134/s0097807815030112
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1002/esp.4172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085427873
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1002/hyp.3360050107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028048264
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1002/hyp.6846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048691270
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/0022-1694(69)90120-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026015198
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.geomorph.2011.05.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030075977
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.geomorph.2015.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002287721
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.jaridenv.2017.04.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085098411
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.jhydrol.2014.11.068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015276918
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/s0022-1694(03)00019-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050894796
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/s0734-189x(84)80011-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003141024
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1029/2007jf000781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045314697
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1029/2007wr006771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013189566
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1029/2008wr007196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007638965
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1029/2008wr007490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008227001
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1029/2011wr011501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041538672
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1029/tr032i004p00591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049408632
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1029/wr015i006p01409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047440884
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1029/wr018i004p00877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001914753
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1061/(asce)0733-9429(1984)110:7(887) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057588761
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1061/(asce)0733-9437(2005)131:4(383) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057594736
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1061/(asce)0733-9437(2008)134:2(202) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057594999
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1061/(asce)he.1943-5584.0000837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057634415
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1061/(asce)ir.1943-4774.0000373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057636987
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1080/02626667.2013.866712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031353428
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1080/02626669009492416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045463796
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1086/623976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058819758
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1111/j.1475-2743.1993.tb00932.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011067825
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1126/science.255.5046.826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062543464
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1130/0016-7606(1945)56[275:edosat]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049350317
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1130/0016-7606(1983)94<80:gcottp>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038791229
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1130/0091-7613(1987)15<813:eorsod>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043713090
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1306/5d25c26d-16c1-11d7-8645000102c1865d schema:sameAs https://app.dimensions.ai/details/publication/pub.1064942157
181 rdf:type schema:CreativeWork
182 https://doi.org/10.4172/2165-784x.1000183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040491621
183 rdf:type schema:CreativeWork
184 https://www.grid.ac/institutes/grid.265695.b schema:alternateName University of Quebec
185 schema:name Hydro-climatology Lab, INRS-ETE, University of Quebec, Quebec, Canada
186 Institute Center for Water and Environment (iWATER), Masdar Institute of Science and Technology, Abu Dhabi, UAE
187 rdf:type schema:Organization
188 https://www.grid.ac/institutes/grid.411982.7 schema:alternateName Dankook University
189 schema:name Department of Civil and Environmental Engineering, Dankook University, Gyeonggi-do, South Korea
190 rdf:type schema:Organization
191 https://www.grid.ac/institutes/grid.440568.b schema:alternateName Khalifa University of Science and Technology
192 schema:name Institute Center for Water and Environment (iWATER), Masdar Institute of Science and Technology, Abu Dhabi, UAE
193 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...