River sinuosity in a humid tropical river basin, south west coast of India View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-05

AUTHORS

B. Ajay Kumar, Girish Gopinath, M. S. Shylesh Chandran

ABSTRACT

The variability in ground water potential at different regions of the Meenachil River basin and the remarkable distribution of palaeodeposit of sand at its middle to lower reaches have led to interpret the sinuosity indexes of the main channel as well as the tributaries of the River for elucidating the relationship between mathematical expressions and filed observations. The measurement of digital elevation model-derived river sinuosity was carried out for 846 km2 of the basin area of Meenachil River. The drainage networks of 10 major sub-watersheds and four mini-watersheds were delineated using remote sensing data—geocoded false colour composite of Indian Remote Sensing satellite (IRS)-1D (LISS III) data with a spatial resolution of 23.5 m—coupled with the Survey of India toposheets (1:50,000). The calculation of the sinuosity indexes were carried out using Arc GIS (8.3 version) software. Hydraulic sinuosity indexes, topographic sinuosity index and standard sinuosity index were calculated. The study depicts the remarkable correlation between theoretical data sets with field observations and the influence of tectonic control on river planforms. Three structurally controlled regions of Meenachil River basin were established using Remote Sensing and Geographical Information System. More... »

PAGES

1763-1772

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12517-013-0864-y

DOI

http://dx.doi.org/10.1007/s12517-013-0864-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007885680


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0909", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geomatic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Government of Kerala", 
          "id": "https://www.grid.ac/institutes/grid.464887.1", 
          "name": [
            "Department of Mining and Geology, Idukki District office, Government of Kerala, Thodupuzha, Kerala, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kumar", 
        "givenName": "B. Ajay", 
        "id": "sg:person.010147107446.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010147107446.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre for Water Resources Development and Management", 
          "id": "https://www.grid.ac/institutes/grid.464826.a", 
          "name": [
            "Remote Sensing Cell, Centre for Water Resources Development and Management, Kozhikode, Kerala, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gopinath", 
        "givenName": "Girish", 
        "id": "sg:person.010300231111.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010300231111.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mahatma Gandhi University", 
          "id": "https://www.grid.ac/institutes/grid.411552.6", 
          "name": [
            "School of Environmental Sciences, Mahatma Gandhi University, P. D. Hills, Kottayam, Kerala, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chandran", 
        "givenName": "M. S. Shylesh", 
        "id": "sg:person.01136113732.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136113732.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.geomorph.2006.03.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000503210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431160500502603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001666890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s100400050162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007492012", 
          "https://doi.org/10.1007/s100400050162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00874482", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008627455", 
          "https://doi.org/10.1007/bf00874482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/esp.3290180607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009115006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomorph.2003.07.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013373452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomorph.2003.07.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013373452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-8306.1968.tb00650.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015766494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0341-8162(94)90028-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016228332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0341-8162(94)90028-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016228332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomorph.2005.02.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019241827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1096-9837(200004)25:4<421::aid-esp65>3.0.co;2-q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019269518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12517-009-0048-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020821175", 
          "https://doi.org/10.1007/s12517-009-0048-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0040-1951(99)00011-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025698975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1130/0016-7606(1963)74[1089:soarot]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029650981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/esp.3290080408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033200646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12517-009-0059-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034443979", 
          "https://doi.org/10.1007/s12517-009-0059-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12517-008-0020-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034657246", 
          "https://doi.org/10.1007/s12517-008-0020-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-555x(01)00187-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036541125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431169108955288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038961554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1130/0016-7606(1985)96<504:roarts>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039468278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2008gl035786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040616095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2747/0749-3878.40.4.258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040838503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0277-3791(03)00145-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044253857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0277-3791(03)00145-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044253857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0037-0738(93)90079-k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045024281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0037-0738(93)90079-k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045024281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12665-009-0127-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048129460", 
          "https://doi.org/10.1007/s12665-009-0127-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12665-009-0127-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048129460", 
          "https://doi.org/10.1007/s12665-009-0127-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/esp.3290160304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049295876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomorph.2009.06.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050115801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.222.4619.49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062527713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.289.5485.1740", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062570907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1130/g24130a.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062733800"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-05", 
    "datePublishedReg": "2014-05-01", 
    "description": "The variability in ground water potential at different regions of the Meenachil River basin and the remarkable distribution of palaeodeposit of sand at its middle to lower reaches have led to interpret the sinuosity indexes of the main channel as well as the tributaries of the River for elucidating the relationship between mathematical expressions and filed observations. The measurement of digital elevation model-derived river sinuosity was carried out for 846 km2 of the basin area of Meenachil River. The drainage networks of 10 major sub-watersheds and four mini-watersheds were delineated using remote sensing data\u2014geocoded false colour composite of Indian Remote Sensing satellite (IRS)-1D (LISS III) data with a spatial resolution of 23.5 m\u2014coupled with the Survey of India toposheets (1:50,000). The calculation of the sinuosity indexes were carried out using Arc GIS (8.3 version) software. Hydraulic sinuosity indexes, topographic sinuosity index and standard sinuosity index were calculated. The study depicts the remarkable correlation between theoretical data sets with field observations and the influence of tectonic control on river planforms. Three structurally controlled regions of Meenachil River basin were established using Remote Sensing and Geographical Information System.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12517-013-0864-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135927", 
        "issn": [
          "1866-7511", 
          "1866-7538"
        ], 
        "name": "Arabian Journal of Geosciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "River sinuosity in a humid tropical river basin, south west coast of India", 
    "pagination": "1763-1772", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "259074f9f00901ed60ac4ec73a0d33ea8ff48aabe2fef27a59049a246cffba80"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12517-013-0864-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007885680"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12517-013-0864-y", 
      "https://app.dimensions.ai/details/publication/pub.1007885680"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000520.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs12517-013-0864-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12517-013-0864-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12517-013-0864-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12517-013-0864-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12517-013-0864-y'


 

This table displays all metadata directly associated to this object as RDF triples.

174 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12517-013-0864-y schema:about anzsrc-for:09
2 anzsrc-for:0909
3 schema:author Ne134c5f0486b406e83e25d6150b8d8fe
4 schema:citation sg:pub.10.1007/bf00874482
5 sg:pub.10.1007/s100400050162
6 sg:pub.10.1007/s12517-008-0020-2
7 sg:pub.10.1007/s12517-009-0048-y
8 sg:pub.10.1007/s12517-009-0059-8
9 sg:pub.10.1007/s12665-009-0127-0
10 https://doi.org/10.1002/(sici)1096-9837(200004)25:4<421::aid-esp65>3.0.co;2-q
11 https://doi.org/10.1002/esp.3290080408
12 https://doi.org/10.1002/esp.3290160304
13 https://doi.org/10.1002/esp.3290180607
14 https://doi.org/10.1016/0037-0738(93)90079-k
15 https://doi.org/10.1016/0341-8162(94)90028-0
16 https://doi.org/10.1016/j.geomorph.2003.07.008
17 https://doi.org/10.1016/j.geomorph.2005.02.012
18 https://doi.org/10.1016/j.geomorph.2006.03.008
19 https://doi.org/10.1016/j.geomorph.2009.06.028
20 https://doi.org/10.1016/s0040-1951(99)00011-6
21 https://doi.org/10.1016/s0169-555x(01)00187-8
22 https://doi.org/10.1016/s0277-3791(03)00145-8
23 https://doi.org/10.1029/2008gl035786
24 https://doi.org/10.1080/01431160500502603
25 https://doi.org/10.1080/01431169108955288
26 https://doi.org/10.1111/j.1467-8306.1968.tb00650.x
27 https://doi.org/10.1126/science.222.4619.49
28 https://doi.org/10.1126/science.289.5485.1740
29 https://doi.org/10.1130/0016-7606(1963)74[1089:soarot]2.0.co;2
30 https://doi.org/10.1130/0016-7606(1985)96<504:roarts>2.0.co;2
31 https://doi.org/10.1130/g24130a.1
32 https://doi.org/10.2747/0749-3878.40.4.258
33 schema:datePublished 2014-05
34 schema:datePublishedReg 2014-05-01
35 schema:description The variability in ground water potential at different regions of the Meenachil River basin and the remarkable distribution of palaeodeposit of sand at its middle to lower reaches have led to interpret the sinuosity indexes of the main channel as well as the tributaries of the River for elucidating the relationship between mathematical expressions and filed observations. The measurement of digital elevation model-derived river sinuosity was carried out for 846 km2 of the basin area of Meenachil River. The drainage networks of 10 major sub-watersheds and four mini-watersheds were delineated using remote sensing data—geocoded false colour composite of Indian Remote Sensing satellite (IRS)-1D (LISS III) data with a spatial resolution of 23.5 m—coupled with the Survey of India toposheets (1:50,000). The calculation of the sinuosity indexes were carried out using Arc GIS (8.3 version) software. Hydraulic sinuosity indexes, topographic sinuosity index and standard sinuosity index were calculated. The study depicts the remarkable correlation between theoretical data sets with field observations and the influence of tectonic control on river planforms. Three structurally controlled regions of Meenachil River basin were established using Remote Sensing and Geographical Information System.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf N51006e9f25994fa794c06678e5fefcea
40 N6149aca1cfb64bcb8719f2c1842ba916
41 sg:journal.1135927
42 schema:name River sinuosity in a humid tropical river basin, south west coast of India
43 schema:pagination 1763-1772
44 schema:productId N0ba402fe1a9d4f78afae8c9fb6c348f4
45 N5ef8f962a6684281a3b03fdb0edcf80b
46 N7d69b1425fcc4c81bb4204aa8fc19cd9
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007885680
48 https://doi.org/10.1007/s12517-013-0864-y
49 schema:sdDatePublished 2019-04-11T02:07
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N4d8a18e2987d4053a243b149bd869447
52 schema:url http://link.springer.com/10.1007%2Fs12517-013-0864-y
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N0ba402fe1a9d4f78afae8c9fb6c348f4 schema:name readcube_id
57 schema:value 259074f9f00901ed60ac4ec73a0d33ea8ff48aabe2fef27a59049a246cffba80
58 rdf:type schema:PropertyValue
59 N4d8a18e2987d4053a243b149bd869447 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N51006e9f25994fa794c06678e5fefcea schema:volumeNumber 7
62 rdf:type schema:PublicationVolume
63 N5ef8f962a6684281a3b03fdb0edcf80b schema:name doi
64 schema:value 10.1007/s12517-013-0864-y
65 rdf:type schema:PropertyValue
66 N6149aca1cfb64bcb8719f2c1842ba916 schema:issueNumber 5
67 rdf:type schema:PublicationIssue
68 N7d69b1425fcc4c81bb4204aa8fc19cd9 schema:name dimensions_id
69 schema:value pub.1007885680
70 rdf:type schema:PropertyValue
71 Naadf78e9e3ad40fa8fbe1783bafac4c1 rdf:first sg:person.010300231111.32
72 rdf:rest Nc30cde1911174bc5b8a45ea3339799f3
73 Nc30cde1911174bc5b8a45ea3339799f3 rdf:first sg:person.01136113732.53
74 rdf:rest rdf:nil
75 Ne134c5f0486b406e83e25d6150b8d8fe rdf:first sg:person.010147107446.91
76 rdf:rest Naadf78e9e3ad40fa8fbe1783bafac4c1
77 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
78 schema:name Engineering
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0909 schema:inDefinedTermSet anzsrc-for:
81 schema:name Geomatic Engineering
82 rdf:type schema:DefinedTerm
83 sg:journal.1135927 schema:issn 1866-7511
84 1866-7538
85 schema:name Arabian Journal of Geosciences
86 rdf:type schema:Periodical
87 sg:person.010147107446.91 schema:affiliation https://www.grid.ac/institutes/grid.464887.1
88 schema:familyName Kumar
89 schema:givenName B. Ajay
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010147107446.91
91 rdf:type schema:Person
92 sg:person.010300231111.32 schema:affiliation https://www.grid.ac/institutes/grid.464826.a
93 schema:familyName Gopinath
94 schema:givenName Girish
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010300231111.32
96 rdf:type schema:Person
97 sg:person.01136113732.53 schema:affiliation https://www.grid.ac/institutes/grid.411552.6
98 schema:familyName Chandran
99 schema:givenName M. S. Shylesh
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136113732.53
101 rdf:type schema:Person
102 sg:pub.10.1007/bf00874482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008627455
103 https://doi.org/10.1007/bf00874482
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s100400050162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007492012
106 https://doi.org/10.1007/s100400050162
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s12517-008-0020-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034657246
109 https://doi.org/10.1007/s12517-008-0020-2
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s12517-009-0048-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1020821175
112 https://doi.org/10.1007/s12517-009-0048-y
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s12517-009-0059-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034443979
115 https://doi.org/10.1007/s12517-009-0059-8
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s12665-009-0127-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048129460
118 https://doi.org/10.1007/s12665-009-0127-0
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1002/(sici)1096-9837(200004)25:4<421::aid-esp65>3.0.co;2-q schema:sameAs https://app.dimensions.ai/details/publication/pub.1019269518
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1002/esp.3290080408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033200646
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1002/esp.3290160304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049295876
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1002/esp.3290180607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009115006
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/0037-0738(93)90079-k schema:sameAs https://app.dimensions.ai/details/publication/pub.1045024281
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/0341-8162(94)90028-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016228332
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.geomorph.2003.07.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013373452
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.geomorph.2005.02.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019241827
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.geomorph.2006.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000503210
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.geomorph.2009.06.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050115801
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/s0040-1951(99)00011-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025698975
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/s0169-555x(01)00187-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036541125
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/s0277-3791(03)00145-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044253857
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1029/2008gl035786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040616095
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1080/01431160500502603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001666890
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1080/01431169108955288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038961554
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1111/j.1467-8306.1968.tb00650.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015766494
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1126/science.222.4619.49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062527713
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1126/science.289.5485.1740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062570907
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1130/0016-7606(1963)74[1089:soarot]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029650981
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1130/0016-7606(1985)96<504:roarts>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039468278
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1130/g24130a.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062733800
163 rdf:type schema:CreativeWork
164 https://doi.org/10.2747/0749-3878.40.4.258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040838503
165 rdf:type schema:CreativeWork
166 https://www.grid.ac/institutes/grid.411552.6 schema:alternateName Mahatma Gandhi University
167 schema:name School of Environmental Sciences, Mahatma Gandhi University, P. D. Hills, Kottayam, Kerala, India
168 rdf:type schema:Organization
169 https://www.grid.ac/institutes/grid.464826.a schema:alternateName Centre for Water Resources Development and Management
170 schema:name Remote Sensing Cell, Centre for Water Resources Development and Management, Kozhikode, Kerala, India
171 rdf:type schema:Organization
172 https://www.grid.ac/institutes/grid.464887.1 schema:alternateName Government of Kerala
173 schema:name Department of Mining and Geology, Idukki District office, Government of Kerala, Thodupuzha, Kerala, India
174 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...