Stress Protocol and Myocardial Perfusion Imaging Accuracy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01

AUTHORS

Alessia Gimelli, Riccardo Liga

ABSTRACT

To evaluate the most recent evolutions in the field of single photon emission computed tomography (SPECT) nuclear cardiac imaging (NCI), particularly regarding the influence of stress protocol specifics on test accuracy. The substantial improvement in both software and hardware SPECT settings may allow a drastic redefinition of the acquisition parameters, with a radical reduction of scanning time. Moreover, recent evidence has identified novel (contra)-indications to the different cardiac stressors, defining the categories of patients in which a specific stressor is most appropriate. Whilst exercise stress is favoured in the majority of patients submitted to SPECT NCI, in patients with atrial fibrillation or diabetes mellitus, a vasodilator stress may be preferred because of a significantly higher specificity. Moreover, the use of non-perfusion variables, such as post-stress diastolic left ventricular parameters or eccentricity index, is favoured to increase the accuracy of SPECT imaging. Finally, the quantification of myocardial blood flow through dynamic scans with cadmium-zinc-telluride cameras is gaining its way in clinical practice, possibly further increasing NCI accuracy in the most difficult patients. More... »

PAGES

2

References to SciGraph publications

  • 2017-01-12. Left ventricular eccentricity index measured with SPECT myocardial perfusion imaging: An additional parameter of adverse cardiac remodeling in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2015-11. Chronotropic response to vasodilator-stress in patients submitted to myocardial perfusion imaging: impact on the accuracy in detecting coronary stenosis in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2018-07. First validation of myocardial flow reserve assessed by dynamic 99mTc-sestamibi CZT-SPECT camera: head to head comparison with 15O-water PET and fractional flow reserve in patients with suspected coronary artery disease. The WATERDAY study in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2016-06. The prognostic value of non-perfusion variables obtained during vasodilator stress myocardial perfusion imaging in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2016-10. Influence of cardiac stress protocol on myocardial perfusion imaging accuracy: The role of exercise level on the evaluation of ischemic burden in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2013-02. Transient ischemic dilation in SPECT myocardial perfusion imaging for prediction of severe coronary artery disease in diabetic patients in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2017-04. Accuracy of myocardial perfusion imaging in detecting multivessel coronary artery disease: A cardiac CZT study in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2019-02. Stress-induced alteration of left ventricular eccentricity: An additional marker of multivessel CAD in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2017-10. Myocardial ischemia in the absence of obstructive coronary lesion: The role of post-stress diastolic dysfunction in detecting early coronary atherosclerosis in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2017-08. Validation of early image acquisitions following Tc-99 m sestamibi injection using a semiconductors camera of cadmium-zinc-telluride in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2010-04. Myocardial imaging with 99mTc-Tetrofosmin: Influence of post-stress acquisition time, regional radiotracer uptake, and wall motion abnormalities on the clinical result in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2015-11. EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT: 2015 revision in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2010-12. Comparison of long-term mortality risk following normal exercise vs adenosine myocardial perfusion SPECT in JOURNAL OF NUCLEAR CARDIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12410-019-9477-5

    DOI

    http://dx.doi.org/10.1007/s12410-019-9477-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111455976


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Cardiorespiratory Medicine and Haematology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Fondazione Toscana Gabriele Monasterio", 
              "id": "https://www.grid.ac/institutes/grid.452599.6", 
              "name": [
                "Fondazione Toscana Gabriele Monasterio, Via Moruzzi, 1, 56124, Pisa, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gimelli", 
            "givenName": "Alessia", 
            "id": "sg:person.01143542411.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143542411.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Pisa", 
              "id": "https://www.grid.ac/institutes/grid.5395.a", 
              "name": [
                "Dipartimento di Patologia Chirurgica, Molecolare e dell\u2019Area Critica, Universit\u00e0 di Pisa, Pisa, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liga", 
            "givenName": "Riccardo", 
            "id": "sg:person.01214120740.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214120740.79"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s12350-016-0499-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010421312", 
              "https://doi.org/10.1007/s12350-016-0499-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-016-0499-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010421312", 
              "https://doi.org/10.1007/s12350-016-0499-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-015-3129-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016623768", 
              "https://doi.org/10.1007/s00259-015-3129-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-017-0777-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017933697", 
              "https://doi.org/10.1007/s12350-017-0777-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-017-0777-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017933697", 
              "https://doi.org/10.1007/s12350-017-0777-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-009-9172-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018389515", 
              "https://doi.org/10.1007/s12350-009-9172-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-009-9172-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018389515", 
              "https://doi.org/10.1007/s12350-009-9172-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/hrt.2010.217281", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020592941"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/01.cir.0000072770.27332.75", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021208995"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-015-0101-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022453088", 
              "https://doi.org/10.1007/s12350-015-0101-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-012-9642-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023212105", 
              "https://doi.org/10.1007/s12350-012-9642-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/ehjci/jeu037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023228325"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-015-3139-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026474677", 
              "https://doi.org/10.1007/s00259-015-3139-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-015-3139-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026474677", 
              "https://doi.org/10.1007/s00259-015-3139-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-010-9300-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027095357", 
              "https://doi.org/10.1007/s12350-010-9300-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/ehjci/jeu322", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032465352"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jacc.2006.08.048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035821251"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.109.065532", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038861017"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-016-0456-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039377047", 
              "https://doi.org/10.1007/s12350-016-0456-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-016-0456-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039377047", 
              "https://doi.org/10.1007/s12350-016-0456-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/ehjci/jeu166", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039618115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/circimaging.113.000497", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042069290"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/circimaging.113.000497", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042069290"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-015-0360-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043235675", 
              "https://doi.org/10.1007/s12350-015-0360-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0002-8703(99)70421-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045353487"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0002-8703(99)70421-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045353487"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.114.143164", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045827122"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/eurheartj/ehq500", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047415103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-016-0441-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049904544", 
              "https://doi.org/10.1007/s12350-016-0441-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.106.039107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051685790"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.115.165498", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070928343"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-017-0862-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084035131", 
              "https://doi.org/10.1007/s12350-017-0862-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-017-0862-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084035131", 
              "https://doi.org/10.1007/s12350-017-0862-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/ehjci/jex313", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093000439"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-018-3958-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101293677", 
              "https://doi.org/10.1007/s00259-018-3958-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-018-3958-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101293677", 
              "https://doi.org/10.1007/s00259-018-3958-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/ehjci/jey077", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103957391"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/ehjci/jey077", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103957391"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-01", 
        "datePublishedReg": "2019-01-01", 
        "description": "To evaluate the most recent evolutions in the field of single photon emission computed tomography (SPECT) nuclear cardiac imaging (NCI), particularly regarding the influence of stress protocol specifics on test accuracy. The substantial improvement in both software and hardware SPECT settings may allow a drastic redefinition of the acquisition parameters, with a radical reduction of scanning time. Moreover, recent evidence has identified novel (contra)-indications to the different cardiac stressors, defining the categories of patients in which a specific stressor is most appropriate. Whilst exercise stress is favoured in the majority of patients submitted to SPECT NCI, in patients with atrial fibrillation or diabetes mellitus, a vasodilator stress may be preferred because of a significantly higher specificity. Moreover, the use of non-perfusion variables, such as post-stress diastolic left ventricular parameters or eccentricity index, is favoured to increase the accuracy of SPECT imaging. Finally, the quantification of myocardial blood flow through dynamic scans with cadmium-zinc-telluride cameras is gaining its way in clinical practice, possibly further increasing NCI accuracy in the most difficult patients.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s12410-019-9477-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1040596", 
            "issn": [
              "1941-9066", 
              "1941-9074"
            ], 
            "name": "Current Cardiovascular Imaging Reports", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "12"
          }
        ], 
        "name": "Stress Protocol and Myocardial Perfusion Imaging Accuracy", 
        "pagination": "2", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b597a1e6dabc69d4546e1c690475c04a1b1cb72140bc461600ad60722785d2ff"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12410-019-9477-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111455976"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12410-019-9477-5", 
          "https://app.dimensions.ai/details/publication/pub.1111455976"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:38", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99832_00000004.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs12410-019-9477-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12410-019-9477-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12410-019-9477-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12410-019-9477-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12410-019-9477-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    168 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12410-019-9477-5 schema:about anzsrc-for:11
    2 anzsrc-for:1102
    3 schema:author N88f5e814170a476596e9b54af6f7d141
    4 schema:citation sg:pub.10.1007/s00259-015-3129-z
    5 sg:pub.10.1007/s00259-015-3139-x
    6 sg:pub.10.1007/s00259-018-3958-7
    7 sg:pub.10.1007/s12350-009-9172-z
    8 sg:pub.10.1007/s12350-010-9300-9
    9 sg:pub.10.1007/s12350-012-9642-6
    10 sg:pub.10.1007/s12350-015-0101-z
    11 sg:pub.10.1007/s12350-015-0360-8
    12 sg:pub.10.1007/s12350-016-0441-3
    13 sg:pub.10.1007/s12350-016-0456-9
    14 sg:pub.10.1007/s12350-016-0499-y
    15 sg:pub.10.1007/s12350-017-0777-3
    16 sg:pub.10.1007/s12350-017-0862-7
    17 https://doi.org/10.1016/j.jacc.2006.08.048
    18 https://doi.org/10.1016/s0002-8703(99)70421-7
    19 https://doi.org/10.1093/ehjci/jeu037
    20 https://doi.org/10.1093/ehjci/jeu166
    21 https://doi.org/10.1093/ehjci/jeu322
    22 https://doi.org/10.1093/ehjci/jex313
    23 https://doi.org/10.1093/ehjci/jey077
    24 https://doi.org/10.1093/eurheartj/ehq500
    25 https://doi.org/10.1136/hrt.2010.217281
    26 https://doi.org/10.1161/01.cir.0000072770.27332.75
    27 https://doi.org/10.1161/circimaging.113.000497
    28 https://doi.org/10.2967/jnumed.106.039107
    29 https://doi.org/10.2967/jnumed.109.065532
    30 https://doi.org/10.2967/jnumed.114.143164
    31 https://doi.org/10.2967/jnumed.115.165498
    32 schema:datePublished 2019-01
    33 schema:datePublishedReg 2019-01-01
    34 schema:description To evaluate the most recent evolutions in the field of single photon emission computed tomography (SPECT) nuclear cardiac imaging (NCI), particularly regarding the influence of stress protocol specifics on test accuracy. The substantial improvement in both software and hardware SPECT settings may allow a drastic redefinition of the acquisition parameters, with a radical reduction of scanning time. Moreover, recent evidence has identified novel (contra)-indications to the different cardiac stressors, defining the categories of patients in which a specific stressor is most appropriate. Whilst exercise stress is favoured in the majority of patients submitted to SPECT NCI, in patients with atrial fibrillation or diabetes mellitus, a vasodilator stress may be preferred because of a significantly higher specificity. Moreover, the use of non-perfusion variables, such as post-stress diastolic left ventricular parameters or eccentricity index, is favoured to increase the accuracy of SPECT imaging. Finally, the quantification of myocardial blood flow through dynamic scans with cadmium-zinc-telluride cameras is gaining its way in clinical practice, possibly further increasing NCI accuracy in the most difficult patients.
    35 schema:genre research_article
    36 schema:inLanguage en
    37 schema:isAccessibleForFree false
    38 schema:isPartOf N367f44d8f3054b58b56dc1099f6196a0
    39 N877ace3235714df780a8f164cc0972f5
    40 sg:journal.1040596
    41 schema:name Stress Protocol and Myocardial Perfusion Imaging Accuracy
    42 schema:pagination 2
    43 schema:productId N5ff75db427b741178a391b05481d21cf
    44 N8ae86897ba2f47a3abde73ea69f8c35b
    45 Ndc9ccb51aaf447179bb123a138d38488
    46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111455976
    47 https://doi.org/10.1007/s12410-019-9477-5
    48 schema:sdDatePublished 2019-04-11T09:38
    49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    50 schema:sdPublisher N7ee0dbf9418640cc9bb00b3d2d1cc567
    51 schema:url https://link.springer.com/10.1007%2Fs12410-019-9477-5
    52 sgo:license sg:explorer/license/
    53 sgo:sdDataset articles
    54 rdf:type schema:ScholarlyArticle
    55 N367f44d8f3054b58b56dc1099f6196a0 schema:volumeNumber 12
    56 rdf:type schema:PublicationVolume
    57 N5ff75db427b741178a391b05481d21cf schema:name dimensions_id
    58 schema:value pub.1111455976
    59 rdf:type schema:PropertyValue
    60 N7ee0dbf9418640cc9bb00b3d2d1cc567 schema:name Springer Nature - SN SciGraph project
    61 rdf:type schema:Organization
    62 N877ace3235714df780a8f164cc0972f5 schema:issueNumber 1
    63 rdf:type schema:PublicationIssue
    64 N88f5e814170a476596e9b54af6f7d141 rdf:first sg:person.01143542411.58
    65 rdf:rest Nc60e4cd9e2b8461090146c49f68137e4
    66 N8ae86897ba2f47a3abde73ea69f8c35b schema:name readcube_id
    67 schema:value b597a1e6dabc69d4546e1c690475c04a1b1cb72140bc461600ad60722785d2ff
    68 rdf:type schema:PropertyValue
    69 Nc60e4cd9e2b8461090146c49f68137e4 rdf:first sg:person.01214120740.79
    70 rdf:rest rdf:nil
    71 Ndc9ccb51aaf447179bb123a138d38488 schema:name doi
    72 schema:value 10.1007/s12410-019-9477-5
    73 rdf:type schema:PropertyValue
    74 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Medical and Health Sciences
    76 rdf:type schema:DefinedTerm
    77 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Cardiorespiratory Medicine and Haematology
    79 rdf:type schema:DefinedTerm
    80 sg:journal.1040596 schema:issn 1941-9066
    81 1941-9074
    82 schema:name Current Cardiovascular Imaging Reports
    83 rdf:type schema:Periodical
    84 sg:person.01143542411.58 schema:affiliation https://www.grid.ac/institutes/grid.452599.6
    85 schema:familyName Gimelli
    86 schema:givenName Alessia
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143542411.58
    88 rdf:type schema:Person
    89 sg:person.01214120740.79 schema:affiliation https://www.grid.ac/institutes/grid.5395.a
    90 schema:familyName Liga
    91 schema:givenName Riccardo
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214120740.79
    93 rdf:type schema:Person
    94 sg:pub.10.1007/s00259-015-3129-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1016623768
    95 https://doi.org/10.1007/s00259-015-3129-z
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1007/s00259-015-3139-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026474677
    98 https://doi.org/10.1007/s00259-015-3139-x
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/s00259-018-3958-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101293677
    101 https://doi.org/10.1007/s00259-018-3958-7
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/s12350-009-9172-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1018389515
    104 https://doi.org/10.1007/s12350-009-9172-z
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/s12350-010-9300-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027095357
    107 https://doi.org/10.1007/s12350-010-9300-9
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/s12350-012-9642-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023212105
    110 https://doi.org/10.1007/s12350-012-9642-6
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/s12350-015-0101-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1022453088
    113 https://doi.org/10.1007/s12350-015-0101-z
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/s12350-015-0360-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043235675
    116 https://doi.org/10.1007/s12350-015-0360-8
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/s12350-016-0441-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049904544
    119 https://doi.org/10.1007/s12350-016-0441-3
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/s12350-016-0456-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039377047
    122 https://doi.org/10.1007/s12350-016-0456-9
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/s12350-016-0499-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1010421312
    125 https://doi.org/10.1007/s12350-016-0499-y
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/s12350-017-0777-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017933697
    128 https://doi.org/10.1007/s12350-017-0777-3
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/s12350-017-0862-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084035131
    131 https://doi.org/10.1007/s12350-017-0862-7
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1016/j.jacc.2006.08.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035821251
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1016/s0002-8703(99)70421-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045353487
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1093/ehjci/jeu037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023228325
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1093/ehjci/jeu166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039618115
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1093/ehjci/jeu322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032465352
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1093/ehjci/jex313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093000439
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1093/ehjci/jey077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103957391
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1093/eurheartj/ehq500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047415103
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1136/hrt.2010.217281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020592941
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1161/01.cir.0000072770.27332.75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021208995
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1161/circimaging.113.000497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042069290
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.2967/jnumed.106.039107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051685790
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.2967/jnumed.109.065532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038861017
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.2967/jnumed.114.143164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045827122
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.2967/jnumed.115.165498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070928343
    162 rdf:type schema:CreativeWork
    163 https://www.grid.ac/institutes/grid.452599.6 schema:alternateName Fondazione Toscana Gabriele Monasterio
    164 schema:name Fondazione Toscana Gabriele Monasterio, Via Moruzzi, 1, 56124, Pisa, Italy
    165 rdf:type schema:Organization
    166 https://www.grid.ac/institutes/grid.5395.a schema:alternateName University of Pisa
    167 schema:name Dipartimento di Patologia Chirurgica, Molecolare e dell’Area Critica, Università di Pisa, Pisa, Italy
    168 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...