Coronary MRA: Technical Advances and Clinical Applications View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-04

AUTHORS

Qi Yang, Kuncheng Li, Debiao Li

ABSTRACT

Magnetic resonance angiography (MRA) has become a routine clinical tool to evaluate arteries in the head and neck, abdomen, and extremities. However, coronary MRA (CMRA) is a more challenging task. A number of factors have hindered its progress, including: 1) the motion of the heart during cardiac and respiratory cycles; 2) the highly tortuous courses; and 3) the small sizes of coronary arteries. It is important to have an appropriate balance between signal-to-noise ratio (SNR), imaging speed, and spatial resolution when determining imaging parameters of CMRA. Whole heart CMRA at 1.5 T has been successfully introduced as a method of choice that can provide visualization of all three major coronary arteries in a single 3D volume. Recent single and multicenter studies suggest that 1.5 T whole heart CMRA can eliminate the need for diagnostic coronary catheterization in many patients at risk of coronary artery disease. 3.0 T cardiovascular MR has become an area of active research in recent years. Contrast-enhanced coronary MRA at 3.0 T improves SNR and contrast-to-noise ratio and shows high accuracy in the detection of significant coronary artery stenoses. More... »

PAGES

165-170

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12410-010-9064-2

DOI

http://dx.doi.org/10.1007/s12410-010-9064-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023909295


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Qi", 
        "id": "sg:person.01353064311.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353064311.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Kuncheng", 
        "id": "sg:person.01326527402.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326527402.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Davis, Suite G-140, 90048, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Debiao", 
        "id": "sg:person.01152021525.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152021525.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/mrm.20835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001351923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.20835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001351923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.10442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002002920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.1095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008217284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e31817ed1ff", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014694042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e31817ed1ff", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014694042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3181a40d1d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015286370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3181a40d1d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015286370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3181a40d1d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015286370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.99.24.3139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016490457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018001418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018001418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.1880070132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022506221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.21963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026744508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.21963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026744508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.20024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027982089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.1880030614", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028899459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.1910280204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031562680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa0806576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032035217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.21224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032271552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2010.02.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032716183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2010.01.071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035573437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.1910330515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036682475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.10653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037066055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.219.3.r01jn44828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037125022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2371040830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042260020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.20923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044361475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2009.03.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044738074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.213.3.r99dc41751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045545531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2006.07.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046253463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.10350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046477584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.20128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047003337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/10976649909080831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070985750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7326/0003-4819-152-3-201002020-00008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073711322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.181.3.1947074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077904629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.187.2.8475281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082822353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.201.3.8939242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083007048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.203.1.9122407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083078764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.205.1.9314975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083154106"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-04", 
    "datePublishedReg": "2011-04-01", 
    "description": "Magnetic resonance angiography (MRA) has become a routine clinical tool to evaluate arteries in the head and neck, abdomen, and extremities. However, coronary MRA (CMRA) is a more challenging task. A number of factors have hindered its progress, including: 1) the motion of the heart during cardiac and respiratory cycles; 2) the highly tortuous courses; and 3) the small sizes of coronary arteries. It is important to have an appropriate balance between signal-to-noise ratio (SNR), imaging speed, and spatial resolution when determining imaging parameters of CMRA. Whole heart CMRA at 1.5 T has been successfully introduced as a method of choice that can provide visualization of all three major coronary arteries in a single 3D volume. Recent single and multicenter studies suggest that 1.5 T whole heart CMRA can eliminate the need for diagnostic coronary catheterization in many patients at risk of coronary artery disease. 3.0 T cardiovascular MR has become an area of active research in recent years. Contrast-enhanced coronary MRA at 3.0 T improves SNR and contrast-to-noise ratio and shows high accuracy in the detection of significant coronary artery stenoses.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12410-010-9064-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040596", 
        "issn": [
          "1941-9066", 
          "1941-9074"
        ], 
        "name": "Current Cardiovascular Imaging Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Coronary MRA: Technical Advances and Clinical Applications", 
    "pagination": "165-170", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "71e7f826dee431084c12ded0f9070932be5be4e36afd9292a65deea6f49f1733"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12410-010-9064-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023909295"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12410-010-9064-2", 
      "https://app.dimensions.ai/details/publication/pub.1023909295"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000536.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs12410-010-9064-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12410-010-9064-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12410-010-9064-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12410-010-9064-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12410-010-9064-2'


 

This table displays all metadata directly associated to this object as RDF triples.

176 TRIPLES      21 PREDICATES      60 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12410-010-9064-2 schema:about anzsrc-for:11
2 anzsrc-for:1102
3 schema:author Nba21de797198476582e9df964c450a09
4 schema:citation https://doi.org/10.1002/jmri.1095
5 https://doi.org/10.1002/jmri.1880030614
6 https://doi.org/10.1002/jmri.1880070132
7 https://doi.org/10.1002/mrm.10350
8 https://doi.org/10.1002/mrm.10442
9 https://doi.org/10.1002/mrm.10653
10 https://doi.org/10.1002/mrm.1910280204
11 https://doi.org/10.1002/mrm.1910330515
12 https://doi.org/10.1002/mrm.20024
13 https://doi.org/10.1002/mrm.20128
14 https://doi.org/10.1002/mrm.20835
15 https://doi.org/10.1002/mrm.20923
16 https://doi.org/10.1002/mrm.21224
17 https://doi.org/10.1002/mrm.21963
18 https://doi.org/10.1002/mrm.22168
19 https://doi.org/10.1016/j.jacc.2006.07.055
20 https://doi.org/10.1016/j.jacc.2009.03.016
21 https://doi.org/10.1016/j.jacc.2010.01.071
22 https://doi.org/10.1016/j.jacc.2010.02.069
23 https://doi.org/10.1056/nejmoa0806576
24 https://doi.org/10.1097/rli.0b013e31817ed1ff
25 https://doi.org/10.1097/rli.0b013e3181a40d1d
26 https://doi.org/10.1148/radiol.2371040830
27 https://doi.org/10.1148/radiology.181.3.1947074
28 https://doi.org/10.1148/radiology.187.2.8475281
29 https://doi.org/10.1148/radiology.201.3.8939242
30 https://doi.org/10.1148/radiology.203.1.9122407
31 https://doi.org/10.1148/radiology.205.1.9314975
32 https://doi.org/10.1148/radiology.213.3.r99dc41751
33 https://doi.org/10.1148/radiology.219.3.r01jn44828
34 https://doi.org/10.1161/01.cir.99.24.3139
35 https://doi.org/10.3109/10976649909080831
36 https://doi.org/10.7326/0003-4819-152-3-201002020-00008
37 schema:datePublished 2011-04
38 schema:datePublishedReg 2011-04-01
39 schema:description Magnetic resonance angiography (MRA) has become a routine clinical tool to evaluate arteries in the head and neck, abdomen, and extremities. However, coronary MRA (CMRA) is a more challenging task. A number of factors have hindered its progress, including: 1) the motion of the heart during cardiac and respiratory cycles; 2) the highly tortuous courses; and 3) the small sizes of coronary arteries. It is important to have an appropriate balance between signal-to-noise ratio (SNR), imaging speed, and spatial resolution when determining imaging parameters of CMRA. Whole heart CMRA at 1.5 T has been successfully introduced as a method of choice that can provide visualization of all three major coronary arteries in a single 3D volume. Recent single and multicenter studies suggest that 1.5 T whole heart CMRA can eliminate the need for diagnostic coronary catheterization in many patients at risk of coronary artery disease. 3.0 T cardiovascular MR has become an area of active research in recent years. Contrast-enhanced coronary MRA at 3.0 T improves SNR and contrast-to-noise ratio and shows high accuracy in the detection of significant coronary artery stenoses.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree false
43 schema:isPartOf N234b7da23b264bf0977ea51713d31097
44 N39e95f08fb394dfa9b9f6c0beacc9521
45 sg:journal.1040596
46 schema:name Coronary MRA: Technical Advances and Clinical Applications
47 schema:pagination 165-170
48 schema:productId N14c720b611bb4692bf7c9cfa9d3d5fb7
49 N9afcc7be74d74bc0a825c0ea50afa64f
50 Ne0b5e553ac7345ba97cfb139366d9e41
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023909295
52 https://doi.org/10.1007/s12410-010-9064-2
53 schema:sdDatePublished 2019-04-10T19:13
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N51fe3160816e40229fd2619834f0dc57
56 schema:url http://link.springer.com/10.1007%2Fs12410-010-9064-2
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N14c720b611bb4692bf7c9cfa9d3d5fb7 schema:name doi
61 schema:value 10.1007/s12410-010-9064-2
62 rdf:type schema:PropertyValue
63 N234b7da23b264bf0977ea51713d31097 schema:volumeNumber 4
64 rdf:type schema:PublicationVolume
65 N39e95f08fb394dfa9b9f6c0beacc9521 schema:issueNumber 2
66 rdf:type schema:PublicationIssue
67 N51fe3160816e40229fd2619834f0dc57 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N542ad2eaf60b485c8d441c5c20969f37 rdf:first sg:person.01152021525.33
70 rdf:rest rdf:nil
71 N5ecee7d0be8f4b119615d856c8746948 rdf:first sg:person.01326527402.59
72 rdf:rest N542ad2eaf60b485c8d441c5c20969f37
73 N9afcc7be74d74bc0a825c0ea50afa64f schema:name readcube_id
74 schema:value 71e7f826dee431084c12ded0f9070932be5be4e36afd9292a65deea6f49f1733
75 rdf:type schema:PropertyValue
76 Nba21de797198476582e9df964c450a09 rdf:first sg:person.01353064311.62
77 rdf:rest N5ecee7d0be8f4b119615d856c8746948
78 Nd9d79c80ad8e433b970a3ecebec3c3c1 schema:name Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Davis, Suite G-140, 90048, Los Angeles, CA, USA
79 rdf:type schema:Organization
80 Ne0b5e553ac7345ba97cfb139366d9e41 schema:name dimensions_id
81 schema:value pub.1023909295
82 rdf:type schema:PropertyValue
83 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
84 schema:name Medical and Health Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
87 schema:name Cardiorespiratory Medicine and Haematology
88 rdf:type schema:DefinedTerm
89 sg:journal.1040596 schema:issn 1941-9066
90 1941-9074
91 schema:name Current Cardiovascular Imaging Reports
92 rdf:type schema:Periodical
93 sg:person.01152021525.33 schema:affiliation Nd9d79c80ad8e433b970a3ecebec3c3c1
94 schema:familyName Li
95 schema:givenName Debiao
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152021525.33
97 rdf:type schema:Person
98 sg:person.01326527402.59 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
99 schema:familyName Li
100 schema:givenName Kuncheng
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326527402.59
102 rdf:type schema:Person
103 sg:person.01353064311.62 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
104 schema:familyName Yang
105 schema:givenName Qi
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353064311.62
107 rdf:type schema:Person
108 https://doi.org/10.1002/jmri.1095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008217284
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1002/jmri.1880030614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028899459
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1002/jmri.1880070132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022506221
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1002/mrm.10350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046477584
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1002/mrm.10442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002002920
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1002/mrm.10653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037066055
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1002/mrm.1910280204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031562680
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1002/mrm.1910330515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036682475
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1002/mrm.20024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027982089
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1002/mrm.20128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047003337
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1002/mrm.20835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001351923
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1002/mrm.20923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044361475
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1002/mrm.21224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032271552
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1002/mrm.21963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026744508
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1002/mrm.22168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018001418
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.jacc.2006.07.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046253463
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.jacc.2009.03.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044738074
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.jacc.2010.01.071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035573437
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.jacc.2010.02.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032716183
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1056/nejmoa0806576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032035217
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1097/rli.0b013e31817ed1ff schema:sameAs https://app.dimensions.ai/details/publication/pub.1014694042
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1097/rli.0b013e3181a40d1d schema:sameAs https://app.dimensions.ai/details/publication/pub.1015286370
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1148/radiol.2371040830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042260020
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1148/radiology.181.3.1947074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077904629
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1148/radiology.187.2.8475281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082822353
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1148/radiology.201.3.8939242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083007048
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1148/radiology.203.1.9122407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083078764
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1148/radiology.205.1.9314975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083154106
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1148/radiology.213.3.r99dc41751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045545531
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1148/radiology.219.3.r01jn44828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037125022
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1161/01.cir.99.24.3139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016490457
169 rdf:type schema:CreativeWork
170 https://doi.org/10.3109/10976649909080831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070985750
171 rdf:type schema:CreativeWork
172 https://doi.org/10.7326/0003-4819-152-3-201002020-00008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073711322
173 rdf:type schema:CreativeWork
174 https://www.grid.ac/institutes/grid.24696.3f schema:alternateName Capital Medical University
175 schema:name Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
176 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...