Generalized robust window data envelopment analysis approach for dynamic performance measurement under uncertain panel data View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-07-17

AUTHORS

Pejman Peykani, Jafar Gheidar-Kheljani, Reza Farzipoor Saen, Emran Mohammadi

ABSTRACT

This paper proposes a robust window data envelopment analysis (RWDEA) approach for assessing the dynamic performance of decision making units (DMU) in the presence of panel and uncertain data. To present the RWDEA method, generalized data envelopment analysis (GDEA) model, window analysis (WA) method, and robust optimization (RO) approach are taken into account. The proposed RWDEA approach can be used under different returns to scale (RTS) assumptions, including constant returns to scale (CRS), non-increasing returns to scale (NIRS), non-decreasing returns to scale (NDRS), and variable returns to scale (VRS). Notably, the RWDEA model is linear and can fully rank DMUs under deep uncertainty. To solve and show the validity of the proposed approach, the RWDEA model is implemented for evaluating the efficiency of the intellectual capital of 10 automotive and parts manufacturing companies. The results indicate that the RWDEA approach is applicable and useful for the dynamic efficiency assessment of DMUs in the presence of uncertain panel data. The RWDEA approach, by considering the uncertainties in the data and using panel data, provides more reliable results in comparison with the classical DEA models. More... »

PAGES

5529-5567

References to SciGraph publications

  • 2019-10-25. A survey of decision making and optimization under uncertainty in ANNALS OF OPERATIONS RESEARCH
  • 2000-09. Robust solutions of Linear Programming problems contaminated with uncertain data in MATHEMATICAL PROGRAMMING
  • 2004-01. Combining DEA Window Analysis with the Malmquist Index Approach in a Study of the Canadian Banking Industry in JOURNAL OF PRODUCTIVITY ANALYSIS
  • 2007. Data Envelopment Analysis, A Comprehensive Text with Models, Applications, References and DEA-Solver Software in NONE
  • 2011-07-23. Data Envelopment Analysis: History, Models, and Interpretations in HANDBOOK ON DATA ENVELOPMENT ANALYSIS
  • 1984-12. Preface to topics in data envelopment analysis in ANNALS OF OPERATIONS RESEARCH
  • 2021-07-09. Fuzzy chance-constrained data envelopment analysis: a structured literature review, current trends, and future directions in FUZZY OPTIMIZATION AND DECISION MAKING
  • 2019-02-05. A second-order cone programming based robust data envelopment analysis model for the new-energy vehicle industry in ANNALS OF OPERATIONS RESEARCH
  • 2020-08-08. Robust data envelopment analysis via ellipsoidal uncertainty sets with application to the Italian banking industry in DECISIONS IN ECONOMICS AND FINANCE
  • 2007-12-15. Min-Max Regret Robust Optimization Approach on Interval Data Uncertainty in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 2013-07-20. Consistent and robust ranking in imprecise data envelopment analysis under perturbations of random subsets of data in OR SPECTRUM
  • 2014-01-24. Advances in data envelopment analysis in ANNALS OF OPERATIONS RESEARCH
  • 1984-12. A developmental study of data envelopment analysis in measuring the efficiency of maintenance units in the U.S. air forces in ANNALS OF OPERATIONS RESEARCH
  • 2014. Performance Measurement with Fuzzy Data Envelopment Analysis in NONE
  • 2016-07-13. Robust DEA Approaches to Performance Evaluation of Olive Oil Production Under Uncertainty in ROBUSTNESS ANALYSIS IN DECISION AIDING, OPTIMIZATION, AND ANALYTICS
  • 2022-04-29. A novel robust network data envelopment analysis approach for performance assessment of mutual funds under uncertainty in ANNALS OF OPERATIONS RESEARCH
  • 2009-10-03. Efficiency and productivity: theory and applications in ANNALS OF OPERATIONS RESEARCH
  • 1996-02. Chapter 2 A generalized data envelopment analysis model: A unification and extension of existing methods for efficiency analysis of decision making units in ANNALS OF OPERATIONS RESEARCH
  • 2018-03-16. Energy efficiency measurement of Chinese Yangtze River Delta’s cities transportation: a DEA window analysis approach in ENERGY EFFICIENCY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12351-022-00729-7

    DOI

    http://dx.doi.org/10.1007/s12351-022-00729-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1149544420


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/15", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Commerce, Management, Tourism and Services", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1503", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Business and Management", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran", 
              "id": "http://www.grid.ac/institutes/grid.411748.f", 
              "name": [
                "School of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Peykani", 
            "givenName": "Pejman", 
            "id": "sg:person.013561213550.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013561213550.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Management and Industrial Engineering Department, Malek Ashtar University of Technology, Tehran, Iran", 
              "id": "http://www.grid.ac/institutes/grid.440788.7", 
              "name": [
                "Management and Industrial Engineering Department, Malek Ashtar University of Technology, Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gheidar-Kheljani", 
            "givenName": "Jafar", 
            "id": "sg:person.012605006255.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012605006255.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Operations Management and Business Statistics, College of Economics and Political Science, Sultan Qaboos University, Muscat, Oman", 
              "id": "http://www.grid.ac/institutes/grid.412846.d", 
              "name": [
                "Department of Operations Management and Business Statistics, College of Economics and Political Science, Sultan Qaboos University, Muscat, Oman"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Farzipoor Saen", 
            "givenName": "Reza", 
            "id": "sg:person.07654010615.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07654010615.78"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran", 
              "id": "http://www.grid.ac/institutes/grid.411748.f", 
              "name": [
                "School of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mohammadi", 
            "givenName": "Emran", 
            "id": "sg:person.011074115517.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011074115517.29"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00291-013-0336-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047835386", 
              "https://doi.org/10.1007/s00291-013-0336-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:prod.0000012453.91326.ec", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022521980", 
              "https://doi.org/10.1023/b:prod.0000012453.91326.ec"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-45283-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022767821", 
              "https://doi.org/10.1007/978-0-387-45283-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10203-020-00299-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1129990544", 
              "https://doi.org/10.1007/s10203-020-00299-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10479-019-03431-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1122095180", 
              "https://doi.org/10.1007/s10479-019-03431-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10700-021-09364-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1139568472", 
              "https://doi.org/10.1007/s10700-021-09364-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4419-6151-8_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023513352", 
              "https://doi.org/10.1007/978-1-4419-6151-8_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10479-019-03155-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111934855", 
              "https://doi.org/10.1007/s10479-019-03155-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-33121-8_14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043174680", 
              "https://doi.org/10.1007/978-3-319-33121-8_14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10957-007-9334-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001604115", 
              "https://doi.org/10.1007/s10957-007-9334-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12053-018-9635-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101554372", 
              "https://doi.org/10.1007/s12053-018-9635-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02125452", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022178118", 
              "https://doi.org/10.1007/bf02125452"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10479-014-1535-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027772264", 
              "https://doi.org/10.1007/s10479-014-1535-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-41372-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030610356", 
              "https://doi.org/10.1007/978-3-642-41372-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00011380", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011685678", 
              "https://doi.org/10.1007/pl00011380"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10479-009-0639-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003240552", 
              "https://doi.org/10.1007/s10479-009-0639-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10479-022-04625-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1147508767", 
              "https://doi.org/10.1007/s10479-022-04625-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01874733", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044305069", 
              "https://doi.org/10.1007/bf01874733"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01874734", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035257693", 
              "https://doi.org/10.1007/bf01874734"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-07-17", 
        "datePublishedReg": "2022-07-17", 
        "description": "This paper proposes a robust window data envelopment analysis (RWDEA) approach for assessing the dynamic performance of decision making units (DMU) in the presence of panel and uncertain data. To present the RWDEA method, generalized data envelopment analysis (GDEA) model, window analysis (WA) method, and robust optimization (RO) approach are taken into account. The proposed RWDEA approach can be used under different returns to scale (RTS) assumptions, including constant returns to scale (CRS), non-increasing returns to scale (NIRS), non-decreasing returns to scale (NDRS), and variable returns to scale (VRS). Notably, the RWDEA model is linear and can fully rank DMUs under deep uncertainty. To solve and show the validity of the proposed approach, the RWDEA model is implemented for evaluating the efficiency of the intellectual capital of 10 automotive and parts manufacturing companies. The results indicate that the RWDEA approach is applicable and useful for the dynamic efficiency assessment of DMUs in the presence of uncertain panel data. The RWDEA approach, by considering the uncertainties in the data and using panel data, provides more reliable results in comparison with the classical DEA models.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s12351-022-00729-7", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1271390", 
            "issn": [
              "1109-2858", 
              "1866-1505"
            ], 
            "name": "Operational Research", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "22"
          }
        ], 
        "keywords": [
          "data envelopment analysis approach", 
          "panel data", 
          "data envelopment analysis model", 
          "non-increasing returns", 
          "non-decreasing returns", 
          "classical DEA models", 
          "window analysis method", 
          "constant returns", 
          "variable returns", 
          "different returns", 
          "DEA model", 
          "return", 
          "intellectual capital", 
          "efficiency assessment", 
          "dynamic performance measurement", 
          "robust optimization approach", 
          "DMUs", 
          "deep uncertainty", 
          "dynamic performance", 
          "analysis approach", 
          "manufacturing companies", 
          "analysis model", 
          "performance measurement", 
          "capital", 
          "uncertainty", 
          "optimization approach", 
          "companies", 
          "model", 
          "decisions", 
          "analysis method", 
          "reliable results", 
          "panel", 
          "assumption", 
          "data", 
          "approach", 
          "account", 
          "efficiency", 
          "method", 
          "performance", 
          "uncertain data", 
          "measurements", 
          "results", 
          "comparison", 
          "units", 
          "presence", 
          "validity", 
          "assessment", 
          "paper"
        ], 
        "name": "Generalized robust window data envelopment analysis approach for dynamic performance measurement under uncertain panel data", 
        "pagination": "5529-5567", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1149544420"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12351-022-00729-7"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12351-022-00729-7", 
          "https://app.dimensions.ai/details/publication/pub.1149544420"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T21:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_934.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s12351-022-00729-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12351-022-00729-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12351-022-00729-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12351-022-00729-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12351-022-00729-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    224 TRIPLES      21 PREDICATES      95 URIs      64 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12351-022-00729-7 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 anzsrc-for:08
    4 anzsrc-for:0806
    5 anzsrc-for:15
    6 anzsrc-for:1503
    7 schema:author N98145d61633d4f4897e9f916dbb96e46
    8 schema:citation sg:pub.10.1007/978-0-387-45283-8
    9 sg:pub.10.1007/978-1-4419-6151-8_1
    10 sg:pub.10.1007/978-3-319-33121-8_14
    11 sg:pub.10.1007/978-3-642-41372-8
    12 sg:pub.10.1007/bf01874733
    13 sg:pub.10.1007/bf01874734
    14 sg:pub.10.1007/bf02125452
    15 sg:pub.10.1007/pl00011380
    16 sg:pub.10.1007/s00291-013-0336-5
    17 sg:pub.10.1007/s10203-020-00299-3
    18 sg:pub.10.1007/s10479-009-0639-8
    19 sg:pub.10.1007/s10479-014-1535-4
    20 sg:pub.10.1007/s10479-019-03155-9
    21 sg:pub.10.1007/s10479-019-03431-8
    22 sg:pub.10.1007/s10479-022-04625-3
    23 sg:pub.10.1007/s10700-021-09364-x
    24 sg:pub.10.1007/s10957-007-9334-6
    25 sg:pub.10.1007/s12053-018-9635-7
    26 sg:pub.10.1023/b:prod.0000012453.91326.ec
    27 schema:datePublished 2022-07-17
    28 schema:datePublishedReg 2022-07-17
    29 schema:description This paper proposes a robust window data envelopment analysis (RWDEA) approach for assessing the dynamic performance of decision making units (DMU) in the presence of panel and uncertain data. To present the RWDEA method, generalized data envelopment analysis (GDEA) model, window analysis (WA) method, and robust optimization (RO) approach are taken into account. The proposed RWDEA approach can be used under different returns to scale (RTS) assumptions, including constant returns to scale (CRS), non-increasing returns to scale (NIRS), non-decreasing returns to scale (NDRS), and variable returns to scale (VRS). Notably, the RWDEA model is linear and can fully rank DMUs under deep uncertainty. To solve and show the validity of the proposed approach, the RWDEA model is implemented for evaluating the efficiency of the intellectual capital of 10 automotive and parts manufacturing companies. The results indicate that the RWDEA approach is applicable and useful for the dynamic efficiency assessment of DMUs in the presence of uncertain panel data. The RWDEA approach, by considering the uncertainties in the data and using panel data, provides more reliable results in comparison with the classical DEA models.
    30 schema:genre article
    31 schema:isAccessibleForFree false
    32 schema:isPartOf N23ac32a929034ac191e8160d982d238a
    33 Ne441cb07a8904701bf2377ed13e9b400
    34 sg:journal.1271390
    35 schema:keywords DEA model
    36 DMUs
    37 account
    38 analysis approach
    39 analysis method
    40 analysis model
    41 approach
    42 assessment
    43 assumption
    44 capital
    45 classical DEA models
    46 companies
    47 comparison
    48 constant returns
    49 data
    50 data envelopment analysis approach
    51 data envelopment analysis model
    52 decisions
    53 deep uncertainty
    54 different returns
    55 dynamic performance
    56 dynamic performance measurement
    57 efficiency
    58 efficiency assessment
    59 intellectual capital
    60 manufacturing companies
    61 measurements
    62 method
    63 model
    64 non-decreasing returns
    65 non-increasing returns
    66 optimization approach
    67 panel
    68 panel data
    69 paper
    70 performance
    71 performance measurement
    72 presence
    73 reliable results
    74 results
    75 return
    76 robust optimization approach
    77 uncertain data
    78 uncertainty
    79 units
    80 validity
    81 variable returns
    82 window analysis method
    83 schema:name Generalized robust window data envelopment analysis approach for dynamic performance measurement under uncertain panel data
    84 schema:pagination 5529-5567
    85 schema:productId N8a8f3b3e5e844a1f922f60e090ec5753
    86 Nd7bf129a92b644e0832d59948177010b
    87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149544420
    88 https://doi.org/10.1007/s12351-022-00729-7
    89 schema:sdDatePublished 2022-11-24T21:08
    90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    91 schema:sdPublisher N063ce9a34d6b4aa187ffc0d3ba8bc3e5
    92 schema:url https://doi.org/10.1007/s12351-022-00729-7
    93 sgo:license sg:explorer/license/
    94 sgo:sdDataset articles
    95 rdf:type schema:ScholarlyArticle
    96 N063ce9a34d6b4aa187ffc0d3ba8bc3e5 schema:name Springer Nature - SN SciGraph project
    97 rdf:type schema:Organization
    98 N23ac32a929034ac191e8160d982d238a schema:issueNumber 5
    99 rdf:type schema:PublicationIssue
    100 N29025f8b9da94ee4adc007c2861372ce rdf:first sg:person.07654010615.78
    101 rdf:rest N2d5edd02522442e399234a7e17d5e620
    102 N2d5edd02522442e399234a7e17d5e620 rdf:first sg:person.011074115517.29
    103 rdf:rest rdf:nil
    104 N2e197cfd54b8478eb601ad292beb88be rdf:first sg:person.012605006255.10
    105 rdf:rest N29025f8b9da94ee4adc007c2861372ce
    106 N8a8f3b3e5e844a1f922f60e090ec5753 schema:name doi
    107 schema:value 10.1007/s12351-022-00729-7
    108 rdf:type schema:PropertyValue
    109 N98145d61633d4f4897e9f916dbb96e46 rdf:first sg:person.013561213550.37
    110 rdf:rest N2e197cfd54b8478eb601ad292beb88be
    111 Nd7bf129a92b644e0832d59948177010b schema:name dimensions_id
    112 schema:value pub.1149544420
    113 rdf:type schema:PropertyValue
    114 Ne441cb07a8904701bf2377ed13e9b400 schema:volumeNumber 22
    115 rdf:type schema:PublicationVolume
    116 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    117 schema:name Mathematical Sciences
    118 rdf:type schema:DefinedTerm
    119 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    120 schema:name Applied Mathematics
    121 rdf:type schema:DefinedTerm
    122 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    123 schema:name Information and Computing Sciences
    124 rdf:type schema:DefinedTerm
    125 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    126 schema:name Information Systems
    127 rdf:type schema:DefinedTerm
    128 anzsrc-for:15 schema:inDefinedTermSet anzsrc-for:
    129 schema:name Commerce, Management, Tourism and Services
    130 rdf:type schema:DefinedTerm
    131 anzsrc-for:1503 schema:inDefinedTermSet anzsrc-for:
    132 schema:name Business and Management
    133 rdf:type schema:DefinedTerm
    134 sg:journal.1271390 schema:issn 1109-2858
    135 1866-1505
    136 schema:name Operational Research
    137 schema:publisher Springer Nature
    138 rdf:type schema:Periodical
    139 sg:person.011074115517.29 schema:affiliation grid-institutes:grid.411748.f
    140 schema:familyName Mohammadi
    141 schema:givenName Emran
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011074115517.29
    143 rdf:type schema:Person
    144 sg:person.012605006255.10 schema:affiliation grid-institutes:grid.440788.7
    145 schema:familyName Gheidar-Kheljani
    146 schema:givenName Jafar
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012605006255.10
    148 rdf:type schema:Person
    149 sg:person.013561213550.37 schema:affiliation grid-institutes:grid.411748.f
    150 schema:familyName Peykani
    151 schema:givenName Pejman
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013561213550.37
    153 rdf:type schema:Person
    154 sg:person.07654010615.78 schema:affiliation grid-institutes:grid.412846.d
    155 schema:familyName Farzipoor Saen
    156 schema:givenName Reza
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07654010615.78
    158 rdf:type schema:Person
    159 sg:pub.10.1007/978-0-387-45283-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022767821
    160 https://doi.org/10.1007/978-0-387-45283-8
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/978-1-4419-6151-8_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023513352
    163 https://doi.org/10.1007/978-1-4419-6151-8_1
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/978-3-319-33121-8_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043174680
    166 https://doi.org/10.1007/978-3-319-33121-8_14
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/978-3-642-41372-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030610356
    169 https://doi.org/10.1007/978-3-642-41372-8
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/bf01874733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044305069
    172 https://doi.org/10.1007/bf01874733
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/bf01874734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035257693
    175 https://doi.org/10.1007/bf01874734
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/bf02125452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022178118
    178 https://doi.org/10.1007/bf02125452
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/pl00011380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011685678
    181 https://doi.org/10.1007/pl00011380
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/s00291-013-0336-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047835386
    184 https://doi.org/10.1007/s00291-013-0336-5
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/s10203-020-00299-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129990544
    187 https://doi.org/10.1007/s10203-020-00299-3
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/s10479-009-0639-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003240552
    190 https://doi.org/10.1007/s10479-009-0639-8
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/s10479-014-1535-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027772264
    193 https://doi.org/10.1007/s10479-014-1535-4
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/s10479-019-03155-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111934855
    196 https://doi.org/10.1007/s10479-019-03155-9
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/s10479-019-03431-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122095180
    199 https://doi.org/10.1007/s10479-019-03431-8
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/s10479-022-04625-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1147508767
    202 https://doi.org/10.1007/s10479-022-04625-3
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/s10700-021-09364-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1139568472
    205 https://doi.org/10.1007/s10700-021-09364-x
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1007/s10957-007-9334-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001604115
    208 https://doi.org/10.1007/s10957-007-9334-6
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1007/s12053-018-9635-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101554372
    211 https://doi.org/10.1007/s12053-018-9635-7
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1023/b:prod.0000012453.91326.ec schema:sameAs https://app.dimensions.ai/details/publication/pub.1022521980
    214 https://doi.org/10.1023/b:prod.0000012453.91326.ec
    215 rdf:type schema:CreativeWork
    216 grid-institutes:grid.411748.f schema:alternateName School of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran
    217 schema:name School of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran
    218 rdf:type schema:Organization
    219 grid-institutes:grid.412846.d schema:alternateName Department of Operations Management and Business Statistics, College of Economics and Political Science, Sultan Qaboos University, Muscat, Oman
    220 schema:name Department of Operations Management and Business Statistics, College of Economics and Political Science, Sultan Qaboos University, Muscat, Oman
    221 rdf:type schema:Organization
    222 grid-institutes:grid.440788.7 schema:alternateName Management and Industrial Engineering Department, Malek Ashtar University of Technology, Tehran, Iran
    223 schema:name Management and Industrial Engineering Department, Malek Ashtar University of Technology, Tehran, Iran
    224 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...