A hybrid metaheuristic for a semiconductor production scheduling problem with deterioration effect and resource constraints View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-06-17

AUTHORS

Shaojun Lu, Min Kong, Zhiping Zhou, Xinbao Liu, Siwen Liu

ABSTRACT

The scheduling of jobs and resources is challenging in semiconductor production and large-scale integrated circuit design. This paper considers a semiconductor manufacturing alliance where there are several manufacturers with limited resources, and the goal is to minimize the makespan by making decisions on resources allocation, jobs assignment, jobs batching, and batches sequencing. The job processing time is investigated based on a convex resource formulation integrated with the deterioration effect. Jobs in a single batch have the same starting and finishing time. The batch setup time is defined by the time-dependent function. Meanwhile, limited resources can be allocated to jobs to improve the production efficiency in each batch. Focusing on settings where all jobs have been assigned to manufacturers, this paper derives some important structural properties. Then, for the case with a single manufacturer, an optimal schedule rule is established to arrange jobs and resources. Furthermore, a Variable Neighborhood Search algorithm based on the Biogeography-Based Optimization is designed to solve the problem, which is proved to be NP-hard. The computational results show that our algorithm can generate more robust and appropriate schedules compared to other algorithms from the literature. More... »

PAGES

5405-5440

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12351-022-00720-2

DOI

http://dx.doi.org/10.1007/s12351-022-00720-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1148761279


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Management, Hefei University of Technology, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.256896.6", 
          "name": [
            "School of Management, Hefei University of Technology, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Shaojun", 
        "id": "sg:person.013554610054.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013554610054.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Key Laboratory of Process Optimization and Intelligent Decision-Making of Ministry of Education, Hefei, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "School of Economics and Management, Anhui Normal University, Wuhu, China", 
            "Key Laboratory of Process Optimization and Intelligent Decision-Making of Ministry of Education, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kong", 
        "givenName": "Min", 
        "id": "sg:person.015453567002.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015453567002.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Management, Hefei University of Technology, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.256896.6", 
          "name": [
            "School of Management, Hefei University of Technology, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Zhiping", 
        "id": "sg:person.07714356667.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07714356667.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Management, Hefei University of Technology, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.256896.6", 
          "name": [
            "School of Management, Hefei University of Technology, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Xinbao", 
        "id": "sg:person.012266776743.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012266776743.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of Texas at Dallas, Richardson, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.267323.1", 
          "name": [
            "School of Management, Hefei University of Technology, Hefei, China", 
            "Department of Computer Science, University of Texas at Dallas, Richardson, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Siwen", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s12351-021-00620-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1135039418", 
          "https://doi.org/10.1007/s12351-021-00620-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10479-015-1824-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012612225", 
          "https://doi.org/10.1007/s10479-015-1824-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10898-017-0536-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085736146", 
          "https://doi.org/10.1007/s10898-017-0536-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-005-2529-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006407250", 
          "https://doi.org/10.1007/s00170-005-2529-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-69446-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018908838", 
          "https://doi.org/10.1007/978-3-540-69446-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12351-019-00477-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1113283722", 
          "https://doi.org/10.1007/s12351-019-00477-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11590-016-1004-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028741096", 
          "https://doi.org/10.1007/s11590-016-1004-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-021-07228-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1137886623", 
          "https://doi.org/10.1007/s00170-021-07228-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11590-022-01857-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1145605347", 
          "https://doi.org/10.1007/s11590-022-01857-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10479-019-03352-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1120250609", 
          "https://doi.org/10.1007/s10479-019-03352-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-06-17", 
    "datePublishedReg": "2022-06-17", 
    "description": "The scheduling of jobs and resources is challenging in semiconductor production and large-scale integrated circuit design. This paper considers a semiconductor manufacturing alliance where there are several manufacturers with limited resources, and the goal is to minimize the makespan by making decisions on resources allocation, jobs assignment, jobs batching, and batches sequencing. The job processing time is investigated based on a convex resource formulation integrated with the deterioration effect. Jobs in a single batch have the same starting and finishing time. The batch setup time is defined by the time-dependent function. Meanwhile, limited resources can be allocated to jobs to improve the production efficiency in each batch. Focusing on settings where all jobs have been assigned to manufacturers, this paper derives some important structural properties. Then, for the case with a single manufacturer, an optimal schedule rule is established to arrange jobs and resources. Furthermore, a Variable Neighborhood Search algorithm based on the Biogeography-Based Optimization is designed to solve the problem, which is proved to be NP-hard. The computational results show that our algorithm can generate more robust and appropriate schedules compared to other algorithms from the literature.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12351-022-00720-2", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1271390", 
        "issn": [
          "1109-2858", 
          "1866-1505"
        ], 
        "name": "Operational Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "keywords": [
      "variable neighborhood search algorithm", 
      "production scheduling problem", 
      "time-dependent function", 
      "scheduling of jobs", 
      "neighborhood search algorithm", 
      "deterioration effect", 
      "important structural properties", 
      "batch setup times", 
      "job processing times", 
      "scheduling problem", 
      "job batching", 
      "hybrid metaheuristic", 
      "computational results", 
      "semiconductor production", 
      "circuit design", 
      "search algorithm", 
      "schedule rules", 
      "setup times", 
      "algorithm", 
      "structural properties", 
      "resource allocation", 
      "production efficiency", 
      "processing time", 
      "resource constraints", 
      "problem", 
      "metaheuristics", 
      "manufacturers", 
      "makespan", 
      "batch", 
      "scheduling", 
      "optimization", 
      "appropriate schedule", 
      "constraints", 
      "formulation", 
      "limited resources", 
      "single batch", 
      "efficiency", 
      "starting", 
      "design", 
      "manufacturing alliance", 
      "properties", 
      "NPs", 
      "job assignment", 
      "batching", 
      "time", 
      "allocation", 
      "function", 
      "effect", 
      "rules", 
      "assignment", 
      "single manufacturer", 
      "cases", 
      "results", 
      "resources", 
      "jobs", 
      "schedule", 
      "production", 
      "same starting", 
      "literature", 
      "goal", 
      "decisions", 
      "setting", 
      "biogeography", 
      "alliance", 
      "paper"
    ], 
    "name": "A hybrid metaheuristic for a semiconductor production scheduling problem with deterioration effect and resource constraints", 
    "pagination": "5405-5440", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1148761279"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12351-022-00720-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12351-022-00720-2", 
      "https://app.dimensions.ai/details/publication/pub.1148761279"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_950.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12351-022-00720-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12351-022-00720-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12351-022-00720-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12351-022-00720-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12351-022-00720-2'


 

This table displays all metadata directly associated to this object as RDF triples.

197 TRIPLES      21 PREDICATES      99 URIs      81 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12351-022-00720-2 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Nb9e9d674ba4343388b66e509fc987fcb
4 schema:citation sg:pub.10.1007/978-3-540-69446-5
5 sg:pub.10.1007/s00170-005-2529-9
6 sg:pub.10.1007/s00170-021-07228-7
7 sg:pub.10.1007/s10479-015-1824-6
8 sg:pub.10.1007/s10479-019-03352-6
9 sg:pub.10.1007/s10898-017-0536-7
10 sg:pub.10.1007/s11590-016-1004-x
11 sg:pub.10.1007/s11590-022-01857-x
12 sg:pub.10.1007/s12351-019-00477-1
13 sg:pub.10.1007/s12351-021-00620-x
14 schema:datePublished 2022-06-17
15 schema:datePublishedReg 2022-06-17
16 schema:description The scheduling of jobs and resources is challenging in semiconductor production and large-scale integrated circuit design. This paper considers a semiconductor manufacturing alliance where there are several manufacturers with limited resources, and the goal is to minimize the makespan by making decisions on resources allocation, jobs assignment, jobs batching, and batches sequencing. The job processing time is investigated based on a convex resource formulation integrated with the deterioration effect. Jobs in a single batch have the same starting and finishing time. The batch setup time is defined by the time-dependent function. Meanwhile, limited resources can be allocated to jobs to improve the production efficiency in each batch. Focusing on settings where all jobs have been assigned to manufacturers, this paper derives some important structural properties. Then, for the case with a single manufacturer, an optimal schedule rule is established to arrange jobs and resources. Furthermore, a Variable Neighborhood Search algorithm based on the Biogeography-Based Optimization is designed to solve the problem, which is proved to be NP-hard. The computational results show that our algorithm can generate more robust and appropriate schedules compared to other algorithms from the literature.
17 schema:genre article
18 schema:isAccessibleForFree false
19 schema:isPartOf N6ae77d96aba644989af59025ff64c8c7
20 Nc14daebc30d14ff087fe65f3c923d30a
21 sg:journal.1271390
22 schema:keywords NPs
23 algorithm
24 alliance
25 allocation
26 appropriate schedule
27 assignment
28 batch
29 batch setup times
30 batching
31 biogeography
32 cases
33 circuit design
34 computational results
35 constraints
36 decisions
37 design
38 deterioration effect
39 effect
40 efficiency
41 formulation
42 function
43 goal
44 hybrid metaheuristic
45 important structural properties
46 job assignment
47 job batching
48 job processing times
49 jobs
50 limited resources
51 literature
52 makespan
53 manufacturers
54 manufacturing alliance
55 metaheuristics
56 neighborhood search algorithm
57 optimization
58 paper
59 problem
60 processing time
61 production
62 production efficiency
63 production scheduling problem
64 properties
65 resource allocation
66 resource constraints
67 resources
68 results
69 rules
70 same starting
71 schedule
72 schedule rules
73 scheduling
74 scheduling of jobs
75 scheduling problem
76 search algorithm
77 semiconductor production
78 setting
79 setup times
80 single batch
81 single manufacturer
82 starting
83 structural properties
84 time
85 time-dependent function
86 variable neighborhood search algorithm
87 schema:name A hybrid metaheuristic for a semiconductor production scheduling problem with deterioration effect and resource constraints
88 schema:pagination 5405-5440
89 schema:productId N5d428edf35e0412682c6108522ef8534
90 Nf588bf4271f84d0e92453d6021e1b0a6
91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1148761279
92 https://doi.org/10.1007/s12351-022-00720-2
93 schema:sdDatePublished 2022-11-24T21:09
94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
95 schema:sdPublisher Nc9b07aa32b0641d9821fe26298e34ebc
96 schema:url https://doi.org/10.1007/s12351-022-00720-2
97 sgo:license sg:explorer/license/
98 sgo:sdDataset articles
99 rdf:type schema:ScholarlyArticle
100 N5d428edf35e0412682c6108522ef8534 schema:name dimensions_id
101 schema:value pub.1148761279
102 rdf:type schema:PropertyValue
103 N6ae77d96aba644989af59025ff64c8c7 schema:volumeNumber 22
104 rdf:type schema:PublicationVolume
105 N7958ee7946e84c41a181af636a2e11ce rdf:first Ndb6ea2bce5534f1e8ca7865673e4983e
106 rdf:rest rdf:nil
107 N966b35027371465e8e29074f3b6f1fb6 rdf:first sg:person.015453567002.31
108 rdf:rest Nd821f82b5f054c68be0b04f0ac2869ad
109 Nafcc0fe93cf54f7cbbf04b7356d655d4 rdf:first sg:person.012266776743.03
110 rdf:rest N7958ee7946e84c41a181af636a2e11ce
111 Nb9e9d674ba4343388b66e509fc987fcb rdf:first sg:person.013554610054.99
112 rdf:rest N966b35027371465e8e29074f3b6f1fb6
113 Nc14daebc30d14ff087fe65f3c923d30a schema:issueNumber 5
114 rdf:type schema:PublicationIssue
115 Nc9b07aa32b0641d9821fe26298e34ebc schema:name Springer Nature - SN SciGraph project
116 rdf:type schema:Organization
117 Nd821f82b5f054c68be0b04f0ac2869ad rdf:first sg:person.07714356667.15
118 rdf:rest Nafcc0fe93cf54f7cbbf04b7356d655d4
119 Ndb6ea2bce5534f1e8ca7865673e4983e schema:affiliation grid-institutes:grid.267323.1
120 schema:familyName Liu
121 schema:givenName Siwen
122 rdf:type schema:Person
123 Nf588bf4271f84d0e92453d6021e1b0a6 schema:name doi
124 schema:value 10.1007/s12351-022-00720-2
125 rdf:type schema:PropertyValue
126 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
127 schema:name Mathematical Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
130 schema:name Applied Mathematics
131 rdf:type schema:DefinedTerm
132 sg:journal.1271390 schema:issn 1109-2858
133 1866-1505
134 schema:name Operational Research
135 schema:publisher Springer Nature
136 rdf:type schema:Periodical
137 sg:person.012266776743.03 schema:affiliation grid-institutes:grid.256896.6
138 schema:familyName Liu
139 schema:givenName Xinbao
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012266776743.03
141 rdf:type schema:Person
142 sg:person.013554610054.99 schema:affiliation grid-institutes:grid.256896.6
143 schema:familyName Lu
144 schema:givenName Shaojun
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013554610054.99
146 rdf:type schema:Person
147 sg:person.015453567002.31 schema:affiliation grid-institutes:None
148 schema:familyName Kong
149 schema:givenName Min
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015453567002.31
151 rdf:type schema:Person
152 sg:person.07714356667.15 schema:affiliation grid-institutes:grid.256896.6
153 schema:familyName Zhou
154 schema:givenName Zhiping
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07714356667.15
156 rdf:type schema:Person
157 sg:pub.10.1007/978-3-540-69446-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018908838
158 https://doi.org/10.1007/978-3-540-69446-5
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/s00170-005-2529-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006407250
161 https://doi.org/10.1007/s00170-005-2529-9
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/s00170-021-07228-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1137886623
164 https://doi.org/10.1007/s00170-021-07228-7
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/s10479-015-1824-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012612225
167 https://doi.org/10.1007/s10479-015-1824-6
168 rdf:type schema:CreativeWork
169 sg:pub.10.1007/s10479-019-03352-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120250609
170 https://doi.org/10.1007/s10479-019-03352-6
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/s10898-017-0536-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085736146
173 https://doi.org/10.1007/s10898-017-0536-7
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/s11590-016-1004-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028741096
176 https://doi.org/10.1007/s11590-016-1004-x
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/s11590-022-01857-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1145605347
179 https://doi.org/10.1007/s11590-022-01857-x
180 rdf:type schema:CreativeWork
181 sg:pub.10.1007/s12351-019-00477-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113283722
182 https://doi.org/10.1007/s12351-019-00477-1
183 rdf:type schema:CreativeWork
184 sg:pub.10.1007/s12351-021-00620-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1135039418
185 https://doi.org/10.1007/s12351-021-00620-x
186 rdf:type schema:CreativeWork
187 grid-institutes:None schema:alternateName Key Laboratory of Process Optimization and Intelligent Decision-Making of Ministry of Education, Hefei, China
188 schema:name Key Laboratory of Process Optimization and Intelligent Decision-Making of Ministry of Education, Hefei, China
189 School of Economics and Management, Anhui Normal University, Wuhu, China
190 rdf:type schema:Organization
191 grid-institutes:grid.256896.6 schema:alternateName School of Management, Hefei University of Technology, Hefei, China
192 schema:name School of Management, Hefei University of Technology, Hefei, China
193 rdf:type schema:Organization
194 grid-institutes:grid.267323.1 schema:alternateName Department of Computer Science, University of Texas at Dallas, Richardson, TX, USA
195 schema:name Department of Computer Science, University of Texas at Dallas, Richardson, TX, USA
196 School of Management, Hefei University of Technology, Hefei, China
197 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...