Optimal location and operation of waste-to-energy plants when future waste composition is uncertain View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-05-26

AUTHORS

Jaroslav Pluskal, Radovan Šomplák, Dušan Hrabec, Vlastimír Nevrlý, Lars Magnus Hvattum

ABSTRACT

In many countries, waste management is increasingly geared towards a circular economy, aiming for a sustainable society with less waste generation, fewer landfills, and a higher rate of recycling. Waste-to-Energy (WtE) plants, which convert waste into heat and energy, can contribute to the circular economy by utilizing types of waste that cannot be recycled. Due to the varying quality of sorting and socio-economic conditions in individual regions, the waste composition differs between regions and has an uncertain future development. Waste composition significantly affects the operation of WtE plants due to differences in energy potential. This paper supports strategic capacity planning for waste energy recovery by introducing a two-stage stochastic mixed-integer linear programming model that captures waste composition uncertainty through scenarios of possible future development. The results of the model provide insights into the economics of operation and identify important factors in the sustainability of the waste handling system. The model is demonstrated on an instance with six scenarios for waste management in the Czech Republic for the year 2030. The solution of the proposed model is to build 14 new WtE plants with a total capacity of 1970 kt in addition to the four existing plants with a capacity of 831 kt. The annual energy recovery capacity is expected to increase almost four times to satisfy EU directives that restrict waste landfilling. More... »

PAGES

5765-5790

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12351-022-00718-w

DOI

http://dx.doi.org/10.1007/s12351-022-00718-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1148176456


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/15", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Commerce, Management, Tourism and Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1503", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Business and Management", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Process Engineering, Faculty of Mechanical Engineering, Brno University of Technology \u2013 VUT Brno, Technick\u00e1 2896/2, 616 69, Brno, Czech Republic", 
          "id": "http://www.grid.ac/institutes/grid.4994.0", 
          "name": [
            "Institute of Process Engineering, Faculty of Mechanical Engineering, Brno University of Technology \u2013 VUT Brno, Technick\u00e1 2896/2, 616 69, Brno, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pluskal", 
        "givenName": "Jaroslav", 
        "id": "sg:person.016033520703.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016033520703.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Process Engineering, Faculty of Mechanical Engineering, Brno University of Technology \u2013 VUT Brno, Technick\u00e1 2896/2, 616 69, Brno, Czech Republic", 
          "id": "http://www.grid.ac/institutes/grid.4994.0", 
          "name": [
            "Institute of Process Engineering, Faculty of Mechanical Engineering, Brno University of Technology \u2013 VUT Brno, Technick\u00e1 2896/2, 616 69, Brno, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "\u0160ompl\u00e1k", 
        "givenName": "Radovan", 
        "id": "sg:person.015047534707.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015047534707.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Applied Informatics, Tomas Bata University in Zl\u00edn, Nad Str\u00e1n\u011bmi 4511, 760 05, Zl\u00edn, Czech Republic", 
          "id": "http://www.grid.ac/institutes/grid.21678.3a", 
          "name": [
            "Faculty of Applied Informatics, Tomas Bata University in Zl\u00edn, Nad Str\u00e1n\u011bmi 4511, 760 05, Zl\u00edn, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hrabec", 
        "givenName": "Du\u0161an", 
        "id": "sg:person.012622663755.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012622663755.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Process Engineering, Faculty of Mechanical Engineering, Brno University of Technology \u2013 VUT Brno, Technick\u00e1 2896/2, 616 69, Brno, Czech Republic", 
          "id": "http://www.grid.ac/institutes/grid.4994.0", 
          "name": [
            "Institute of Process Engineering, Faculty of Mechanical Engineering, Brno University of Technology \u2013 VUT Brno, Technick\u00e1 2896/2, 616 69, Brno, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nevrl\u00fd", 
        "givenName": "Vlastim\u00edr", 
        "id": "sg:person.013073140125.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013073140125.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Logistics, Molde University College, P.O. Box 2110, NO-6402, Molde, Norway", 
          "id": "http://www.grid.ac/institutes/grid.411834.b", 
          "name": [
            "Faculty of Logistics, Molde University College, P.O. Box 2110, NO-6402, Molde, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hvattum", 
        "givenName": "Lars Magnus", 
        "id": "sg:person.015430622457.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015430622457.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s12351-019-00538-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1123594212", 
          "https://doi.org/10.1007/s12351-019-00538-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-92280-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024567737", 
          "https://doi.org/10.1007/978-0-387-92280-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12351-018-0415-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106023793", 
          "https://doi.org/10.1007/s12351-018-0415-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12649-019-00764-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1120013532", 
          "https://doi.org/10.1007/s12649-019-00764-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40430-019-1891-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1120795772", 
          "https://doi.org/10.1007/s40430-019-1891-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11356-016-8284-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018691084", 
          "https://doi.org/10.1007/s11356-016-8284-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12351-009-0052-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050114833", 
          "https://doi.org/10.1007/s12351-009-0052-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12063-020-00157-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1128248647", 
          "https://doi.org/10.1007/s12063-020-00157-w"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10100-019-00626-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1116668242", 
          "https://doi.org/10.1007/s10100-019-00626-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11356-017-8574-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083845744", 
          "https://doi.org/10.1007/s11356-017-8574-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-05-26", 
    "datePublishedReg": "2022-05-26", 
    "description": "In many countries, waste management is increasingly geared towards a circular economy, aiming for a sustainable society with less waste generation, fewer landfills, and a higher rate of recycling. Waste-to-Energy (WtE) plants, which convert waste into heat and energy, can contribute to the circular economy by utilizing types of waste that cannot be recycled. Due to the varying quality of sorting and socio-economic conditions in individual regions, the waste composition differs between regions and has an uncertain future development. Waste composition significantly affects the operation of WtE plants due to differences in energy potential. This paper supports strategic capacity planning for waste energy recovery by introducing a two-stage stochastic mixed-integer linear programming model that captures waste composition uncertainty through scenarios of possible future development. The results of the model provide insights into the economics of operation and identify important factors in the sustainability of the waste handling system. The model is demonstrated on an instance with six scenarios for waste management in the Czech Republic for the year 2030. The solution of the proposed model is to build 14 new WtE plants with a total capacity of 1970 kt in addition to the four existing plants with a capacity of 831 kt. The annual energy recovery capacity is expected to increase almost four times to satisfy EU directives that restrict waste landfilling.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12351-022-00718-w", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.9390953", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1271390", 
        "issn": [
          "1109-2858", 
          "1866-1505"
        ], 
        "name": "Operational Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "keywords": [
      "waste composition", 
      "WTE plants", 
      "energy plants", 
      "waste energy recovery", 
      "two-stage stochastic mixed-integer linear programming model", 
      "stochastic mixed-integer linear programming model", 
      "economics of operation", 
      "energy recovery capacity", 
      "type of waste", 
      "waste management", 
      "energy recovery", 
      "waste handling systems", 
      "waste landfilling", 
      "mixed-integer linear programming model", 
      "less waste generation", 
      "circular economy", 
      "energy potential", 
      "handling system", 
      "optimal location", 
      "waste generation", 
      "waste", 
      "total capacity", 
      "operation", 
      "linear programming model", 
      "composition uncertainty", 
      "future development", 
      "recovery capacity", 
      "landfilling", 
      "landfill", 
      "sustainable society", 
      "heat", 
      "capacity", 
      "year 2030", 
      "possible future developments", 
      "recycling", 
      "model", 
      "composition", 
      "uncertain future developments", 
      "energy", 
      "programming model", 
      "scenarios", 
      "plants", 
      "solution", 
      "uncertainty", 
      "important factor", 
      "EU directives", 
      "generation", 
      "conditions", 
      "system", 
      "KT", 
      "region", 
      "location", 
      "recovery", 
      "results", 
      "development", 
      "potential", 
      "addition", 
      "time", 
      "rate", 
      "quality", 
      "sustainability", 
      "types", 
      "economy", 
      "individual regions", 
      "insights", 
      "Directive", 
      "factors", 
      "sorting", 
      "economics", 
      "instances", 
      "Czech Republic", 
      "management", 
      "high rate", 
      "differences", 
      "socio-economic conditions", 
      "countries", 
      "Republic", 
      "strategic capacity", 
      "society", 
      "paper"
    ], 
    "name": "Optimal location and operation of waste-to-energy plants when future waste composition is uncertain", 
    "pagination": "5765-5790", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1148176456"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12351-022-00718-w"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12351-022-00718-w", 
      "https://app.dimensions.ai/details/publication/pub.1148176456"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_921.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12351-022-00718-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12351-022-00718-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12351-022-00718-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12351-022-00718-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12351-022-00718-w'


 

This table displays all metadata directly associated to this object as RDF triples.

229 TRIPLES      21 PREDICATES      118 URIs      96 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12351-022-00718-w schema:about anzsrc-for:01
2 anzsrc-for:0102
3 anzsrc-for:08
4 anzsrc-for:0806
5 anzsrc-for:15
6 anzsrc-for:1503
7 schema:author Nb99511bed0044f77973a9976bb3802f7
8 schema:citation sg:pub.10.1007/978-0-387-92280-5
9 sg:pub.10.1007/s10100-019-00626-z
10 sg:pub.10.1007/s11356-016-8284-7
11 sg:pub.10.1007/s11356-017-8574-8
12 sg:pub.10.1007/s12063-020-00157-w
13 sg:pub.10.1007/s12351-009-0052-8
14 sg:pub.10.1007/s12351-018-0415-0
15 sg:pub.10.1007/s12351-019-00538-5
16 sg:pub.10.1007/s12649-019-00764-0
17 sg:pub.10.1007/s40430-019-1891-8
18 schema:datePublished 2022-05-26
19 schema:datePublishedReg 2022-05-26
20 schema:description In many countries, waste management is increasingly geared towards a circular economy, aiming for a sustainable society with less waste generation, fewer landfills, and a higher rate of recycling. Waste-to-Energy (WtE) plants, which convert waste into heat and energy, can contribute to the circular economy by utilizing types of waste that cannot be recycled. Due to the varying quality of sorting and socio-economic conditions in individual regions, the waste composition differs between regions and has an uncertain future development. Waste composition significantly affects the operation of WtE plants due to differences in energy potential. This paper supports strategic capacity planning for waste energy recovery by introducing a two-stage stochastic mixed-integer linear programming model that captures waste composition uncertainty through scenarios of possible future development. The results of the model provide insights into the economics of operation and identify important factors in the sustainability of the waste handling system. The model is demonstrated on an instance with six scenarios for waste management in the Czech Republic for the year 2030. The solution of the proposed model is to build 14 new WtE plants with a total capacity of 1970 kt in addition to the four existing plants with a capacity of 831 kt. The annual energy recovery capacity is expected to increase almost four times to satisfy EU directives that restrict waste landfilling.
21 schema:genre article
22 schema:isAccessibleForFree true
23 schema:isPartOf N7c0b22a9f8434008821ddafa9c8523bb
24 Nc6ec09a026854d0c8e8ffa40b7620bb6
25 sg:journal.1271390
26 schema:keywords Czech Republic
27 Directive
28 EU directives
29 KT
30 Republic
31 WTE plants
32 addition
33 capacity
34 circular economy
35 composition
36 composition uncertainty
37 conditions
38 countries
39 development
40 differences
41 economics
42 economics of operation
43 economy
44 energy
45 energy plants
46 energy potential
47 energy recovery
48 energy recovery capacity
49 factors
50 future development
51 generation
52 handling system
53 heat
54 high rate
55 important factor
56 individual regions
57 insights
58 instances
59 landfill
60 landfilling
61 less waste generation
62 linear programming model
63 location
64 management
65 mixed-integer linear programming model
66 model
67 operation
68 optimal location
69 paper
70 plants
71 possible future developments
72 potential
73 programming model
74 quality
75 rate
76 recovery
77 recovery capacity
78 recycling
79 region
80 results
81 scenarios
82 society
83 socio-economic conditions
84 solution
85 sorting
86 stochastic mixed-integer linear programming model
87 strategic capacity
88 sustainability
89 sustainable society
90 system
91 time
92 total capacity
93 two-stage stochastic mixed-integer linear programming model
94 type of waste
95 types
96 uncertain future developments
97 uncertainty
98 waste
99 waste composition
100 waste energy recovery
101 waste generation
102 waste handling systems
103 waste landfilling
104 waste management
105 year 2030
106 schema:name Optimal location and operation of waste-to-energy plants when future waste composition is uncertain
107 schema:pagination 5765-5790
108 schema:productId N25dc9e5639d547689b8ce49520ee0bfd
109 N8df503c136ad4ba9a7100af1f5ea8176
110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1148176456
111 https://doi.org/10.1007/s12351-022-00718-w
112 schema:sdDatePublished 2022-11-24T21:08
113 schema:sdLicense https://scigraph.springernature.com/explorer/license/
114 schema:sdPublisher N64cb1b648cf34a5781813c4b58d62fb5
115 schema:url https://doi.org/10.1007/s12351-022-00718-w
116 sgo:license sg:explorer/license/
117 sgo:sdDataset articles
118 rdf:type schema:ScholarlyArticle
119 N0f7c90d379c34895a7ccbfdf4aeb2d19 rdf:first sg:person.013073140125.47
120 rdf:rest Ndac79665cfc240968b86d4a3f1bc88e5
121 N25dc9e5639d547689b8ce49520ee0bfd schema:name dimensions_id
122 schema:value pub.1148176456
123 rdf:type schema:PropertyValue
124 N64cb1b648cf34a5781813c4b58d62fb5 schema:name Springer Nature - SN SciGraph project
125 rdf:type schema:Organization
126 N7c0b22a9f8434008821ddafa9c8523bb schema:volumeNumber 22
127 rdf:type schema:PublicationVolume
128 N8df503c136ad4ba9a7100af1f5ea8176 schema:name doi
129 schema:value 10.1007/s12351-022-00718-w
130 rdf:type schema:PropertyValue
131 Nb99511bed0044f77973a9976bb3802f7 rdf:first sg:person.016033520703.01
132 rdf:rest Ne7e69a4fe07d447d9c4163c754dd21f3
133 Nc6ec09a026854d0c8e8ffa40b7620bb6 schema:issueNumber 5
134 rdf:type schema:PublicationIssue
135 Nd746a67c005e4f8996f967a2a8cec570 rdf:first sg:person.012622663755.17
136 rdf:rest N0f7c90d379c34895a7ccbfdf4aeb2d19
137 Ndac79665cfc240968b86d4a3f1bc88e5 rdf:first sg:person.015430622457.43
138 rdf:rest rdf:nil
139 Ne7e69a4fe07d447d9c4163c754dd21f3 rdf:first sg:person.015047534707.44
140 rdf:rest Nd746a67c005e4f8996f967a2a8cec570
141 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
142 schema:name Mathematical Sciences
143 rdf:type schema:DefinedTerm
144 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
145 schema:name Applied Mathematics
146 rdf:type schema:DefinedTerm
147 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
148 schema:name Information and Computing Sciences
149 rdf:type schema:DefinedTerm
150 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
151 schema:name Information Systems
152 rdf:type schema:DefinedTerm
153 anzsrc-for:15 schema:inDefinedTermSet anzsrc-for:
154 schema:name Commerce, Management, Tourism and Services
155 rdf:type schema:DefinedTerm
156 anzsrc-for:1503 schema:inDefinedTermSet anzsrc-for:
157 schema:name Business and Management
158 rdf:type schema:DefinedTerm
159 sg:grant.9390953 http://pending.schema.org/fundedItem sg:pub.10.1007/s12351-022-00718-w
160 rdf:type schema:MonetaryGrant
161 sg:journal.1271390 schema:issn 1109-2858
162 1866-1505
163 schema:name Operational Research
164 schema:publisher Springer Nature
165 rdf:type schema:Periodical
166 sg:person.012622663755.17 schema:affiliation grid-institutes:grid.21678.3a
167 schema:familyName Hrabec
168 schema:givenName Dušan
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012622663755.17
170 rdf:type schema:Person
171 sg:person.013073140125.47 schema:affiliation grid-institutes:grid.4994.0
172 schema:familyName Nevrlý
173 schema:givenName Vlastimír
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013073140125.47
175 rdf:type schema:Person
176 sg:person.015047534707.44 schema:affiliation grid-institutes:grid.4994.0
177 schema:familyName Šomplák
178 schema:givenName Radovan
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015047534707.44
180 rdf:type schema:Person
181 sg:person.015430622457.43 schema:affiliation grid-institutes:grid.411834.b
182 schema:familyName Hvattum
183 schema:givenName Lars Magnus
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015430622457.43
185 rdf:type schema:Person
186 sg:person.016033520703.01 schema:affiliation grid-institutes:grid.4994.0
187 schema:familyName Pluskal
188 schema:givenName Jaroslav
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016033520703.01
190 rdf:type schema:Person
191 sg:pub.10.1007/978-0-387-92280-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024567737
192 https://doi.org/10.1007/978-0-387-92280-5
193 rdf:type schema:CreativeWork
194 sg:pub.10.1007/s10100-019-00626-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1116668242
195 https://doi.org/10.1007/s10100-019-00626-z
196 rdf:type schema:CreativeWork
197 sg:pub.10.1007/s11356-016-8284-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018691084
198 https://doi.org/10.1007/s11356-016-8284-7
199 rdf:type schema:CreativeWork
200 sg:pub.10.1007/s11356-017-8574-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083845744
201 https://doi.org/10.1007/s11356-017-8574-8
202 rdf:type schema:CreativeWork
203 sg:pub.10.1007/s12063-020-00157-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1128248647
204 https://doi.org/10.1007/s12063-020-00157-w
205 rdf:type schema:CreativeWork
206 sg:pub.10.1007/s12351-009-0052-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050114833
207 https://doi.org/10.1007/s12351-009-0052-8
208 rdf:type schema:CreativeWork
209 sg:pub.10.1007/s12351-018-0415-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106023793
210 https://doi.org/10.1007/s12351-018-0415-0
211 rdf:type schema:CreativeWork
212 sg:pub.10.1007/s12351-019-00538-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123594212
213 https://doi.org/10.1007/s12351-019-00538-5
214 rdf:type schema:CreativeWork
215 sg:pub.10.1007/s12649-019-00764-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120013532
216 https://doi.org/10.1007/s12649-019-00764-0
217 rdf:type schema:CreativeWork
218 sg:pub.10.1007/s40430-019-1891-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120795772
219 https://doi.org/10.1007/s40430-019-1891-8
220 rdf:type schema:CreativeWork
221 grid-institutes:grid.21678.3a schema:alternateName Faculty of Applied Informatics, Tomas Bata University in Zlín, Nad Stráněmi 4511, 760 05, Zlín, Czech Republic
222 schema:name Faculty of Applied Informatics, Tomas Bata University in Zlín, Nad Stráněmi 4511, 760 05, Zlín, Czech Republic
223 rdf:type schema:Organization
224 grid-institutes:grid.411834.b schema:alternateName Faculty of Logistics, Molde University College, P.O. Box 2110, NO-6402, Molde, Norway
225 schema:name Faculty of Logistics, Molde University College, P.O. Box 2110, NO-6402, Molde, Norway
226 rdf:type schema:Organization
227 grid-institutes:grid.4994.0 schema:alternateName Institute of Process Engineering, Faculty of Mechanical Engineering, Brno University of Technology – VUT Brno, Technická 2896/2, 616 69, Brno, Czech Republic
228 schema:name Institute of Process Engineering, Faculty of Mechanical Engineering, Brno University of Technology – VUT Brno, Technická 2896/2, 616 69, Brno, Czech Republic
229 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...