A multi-objective formulation for the closed-loop plastic supply chain under uncertainty View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-05-30

AUTHORS

Seyed Babak Ebrahimi, Ehsan Bagheri

ABSTRACT

Supply risk is one of the undeniable risks in a supply chain that can affect the supply chain process and lead to disruptions in customer satisfaction or distributor reliability. This research employs a closed-loop supply chain network for the plastic bottle industry, followed by formulating a multi-objective mathematical model by considering several assumptions. The model seeks to optimize total costs, supply risk, and customers’ satisfaction (distributor’s reliability). The revised multi-choice goal programming approach is also applied to solve the model and verify it through a case study. Moreover, the best–worst method as a robust multi-criteria decision-making tool is used to find the values of the parameters of supply risk. Afterward, the sensitivity analysis checks the proposed framework’s robustness and shows its reaction under various conditions. Our results indicate the effectiveness of the proposed framework and offer insights that can be used to improve an organization’s status. More... »

PAGES

4725-4768

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12351-022-00716-y

DOI

http://dx.doi.org/10.1007/s12351-022-00716-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1148254735


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Financial Engineering Group, Faculty of Industrial Engineering, K. N. Toosi University of Technology, Pardis St. Molasadra Ave., Vanak Sq, P.O. Box 15875-4416, 19395-1999, Tehran, Iran", 
          "id": "http://www.grid.ac/institutes/grid.411976.c", 
          "name": [
            "Financial Engineering Group, Faculty of Industrial Engineering, K. N. Toosi University of Technology, Pardis St. Molasadra Ave., Vanak Sq, P.O. Box 15875-4416, 19395-1999, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ebrahimi", 
        "givenName": "Seyed Babak", 
        "id": "sg:person.010732545356.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010732545356.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Financial Engineering Group, Faculty of Industrial Engineering, K. N. Toosi University of Technology, Pardis St. Molasadra Ave., Vanak Sq, P.O. Box 15875-4416, 19395-1999, Tehran, Iran", 
          "id": "http://www.grid.ac/institutes/grid.411976.c", 
          "name": [
            "Financial Engineering Group, Faculty of Industrial Engineering, K. N. Toosi University of Technology, Pardis St. Molasadra Ave., Vanak Sq, P.O. Box 15875-4416, 19395-1999, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bagheri", 
        "givenName": "Ehsan", 
        "id": "sg:person.016216701663.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016216701663.72"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s12351-018-0398-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103159767", 
          "https://doi.org/10.1007/s12351-018-0398-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12351-018-0376-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100712857", 
          "https://doi.org/10.1007/s12351-018-0376-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40092-016-0177-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000316090", 
          "https://doi.org/10.1007/s40092-016-0177-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-017-1437-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099678222", 
          "https://doi.org/10.1007/s00170-017-1437-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12351-019-00494-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1114105160", 
          "https://doi.org/10.1007/s12351-019-00494-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10107-003-0396-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045733404", 
          "https://doi.org/10.1007/s10107-003-0396-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12351-020-00604-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1131156851", 
          "https://doi.org/10.1007/s12351-020-00604-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10107-012-0567-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020526241", 
          "https://doi.org/10.1007/s10107-012-0567-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00291-011-0268-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021855618", 
          "https://doi.org/10.1007/s00291-011-0268-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12351-018-0443-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110580622", 
          "https://doi.org/10.1007/s12351-018-0443-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-05-30", 
    "datePublishedReg": "2022-05-30", 
    "description": "Supply risk is one of the undeniable risks in a supply chain that can affect the supply chain process and lead to disruptions in customer satisfaction or distributor reliability. This research employs a closed-loop supply chain network for the plastic bottle industry, followed by formulating a multi-objective mathematical model by considering several assumptions. The model seeks to optimize total costs, supply risk, and customers\u2019 satisfaction (distributor\u2019s reliability). The revised multi-choice goal programming approach is also applied to solve the model and verify it through a case study. Moreover, the best\u2013worst method as a robust multi-criteria decision-making tool is used to find the values of the parameters of supply risk. Afterward, the sensitivity analysis checks the proposed framework\u2019s robustness and shows its reaction under various conditions. Our results indicate the effectiveness of the proposed framework and offer insights that can be used to improve an organization\u2019s status.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12351-022-00716-y", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1271390", 
        "issn": [
          "1109-2858", 
          "1866-1505"
        ], 
        "name": "Operational Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "keywords": [
      "multi-objective mathematical model", 
      "closed-loop supply chain network", 
      "multi-choice goal programming approach", 
      "multi-objective formulation", 
      "mathematical model", 
      "goal programming approach", 
      "supply chain network", 
      "programming approach", 
      "chain network", 
      "robustness", 
      "sensitivity analysis", 
      "model", 
      "decision-making tool", 
      "uncertainty", 
      "formulation", 
      "supply risk", 
      "supply chain", 
      "assumption", 
      "total cost", 
      "parameters", 
      "network", 
      "supply chain processes", 
      "plastics supply chain", 
      "chain", 
      "worst method", 
      "framework", 
      "approach", 
      "case study", 
      "customer satisfaction", 
      "effectiveness", 
      "chain process", 
      "reliability", 
      "organization status", 
      "tool", 
      "multi-criteria decision-making tool", 
      "framework robustness", 
      "conditions", 
      "results", 
      "cost", 
      "values", 
      "analysis", 
      "satisfaction", 
      "process", 
      "customers", 
      "industry", 
      "risk", 
      "insights", 
      "research", 
      "study", 
      "disruption", 
      "reaction", 
      "status", 
      "method", 
      "undeniable risk"
    ], 
    "name": "A multi-objective formulation for the closed-loop plastic supply chain under uncertainty", 
    "pagination": "4725-4768", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1148254735"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12351-022-00716-y"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12351-022-00716-y", 
      "https://app.dimensions.ai/details/publication/pub.1148254735"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_950.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12351-022-00716-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12351-022-00716-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12351-022-00716-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12351-022-00716-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12351-022-00716-y'


 

This table displays all metadata directly associated to this object as RDF triples.

158 TRIPLES      21 PREDICATES      88 URIs      70 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12351-022-00716-y schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N449073f1c8a44beca6388ab6fd092040
4 schema:citation sg:pub.10.1007/s00170-017-1437-0
5 sg:pub.10.1007/s00291-011-0268-x
6 sg:pub.10.1007/s10107-003-0396-4
7 sg:pub.10.1007/s10107-012-0567-2
8 sg:pub.10.1007/s12351-018-0376-3
9 sg:pub.10.1007/s12351-018-0398-x
10 sg:pub.10.1007/s12351-018-0443-9
11 sg:pub.10.1007/s12351-019-00494-0
12 sg:pub.10.1007/s12351-020-00604-3
13 sg:pub.10.1007/s40092-016-0177-3
14 schema:datePublished 2022-05-30
15 schema:datePublishedReg 2022-05-30
16 schema:description Supply risk is one of the undeniable risks in a supply chain that can affect the supply chain process and lead to disruptions in customer satisfaction or distributor reliability. This research employs a closed-loop supply chain network for the plastic bottle industry, followed by formulating a multi-objective mathematical model by considering several assumptions. The model seeks to optimize total costs, supply risk, and customers’ satisfaction (distributor’s reliability). The revised multi-choice goal programming approach is also applied to solve the model and verify it through a case study. Moreover, the best–worst method as a robust multi-criteria decision-making tool is used to find the values of the parameters of supply risk. Afterward, the sensitivity analysis checks the proposed framework’s robustness and shows its reaction under various conditions. Our results indicate the effectiveness of the proposed framework and offer insights that can be used to improve an organization’s status.
17 schema:genre article
18 schema:isAccessibleForFree false
19 schema:isPartOf N869b61f8ca7647789fd792f777793878
20 Nf6760caef2c047b19342a511da03a155
21 sg:journal.1271390
22 schema:keywords analysis
23 approach
24 assumption
25 case study
26 chain
27 chain network
28 chain process
29 closed-loop supply chain network
30 conditions
31 cost
32 customer satisfaction
33 customers
34 decision-making tool
35 disruption
36 effectiveness
37 formulation
38 framework
39 framework robustness
40 goal programming approach
41 industry
42 insights
43 mathematical model
44 method
45 model
46 multi-choice goal programming approach
47 multi-criteria decision-making tool
48 multi-objective formulation
49 multi-objective mathematical model
50 network
51 organization status
52 parameters
53 plastics supply chain
54 process
55 programming approach
56 reaction
57 reliability
58 research
59 results
60 risk
61 robustness
62 satisfaction
63 sensitivity analysis
64 status
65 study
66 supply chain
67 supply chain network
68 supply chain processes
69 supply risk
70 tool
71 total cost
72 uncertainty
73 undeniable risk
74 values
75 worst method
76 schema:name A multi-objective formulation for the closed-loop plastic supply chain under uncertainty
77 schema:pagination 4725-4768
78 schema:productId N169430cd726b4e2dbcc09ca1f06c0b68
79 Ndbfd9b42bc9f4942b9d503d92ee7f97e
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1148254735
81 https://doi.org/10.1007/s12351-022-00716-y
82 schema:sdDatePublished 2022-11-24T21:09
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher N7a180e279b2545118e08b0d3a3fa0198
85 schema:url https://doi.org/10.1007/s12351-022-00716-y
86 sgo:license sg:explorer/license/
87 sgo:sdDataset articles
88 rdf:type schema:ScholarlyArticle
89 N169430cd726b4e2dbcc09ca1f06c0b68 schema:name doi
90 schema:value 10.1007/s12351-022-00716-y
91 rdf:type schema:PropertyValue
92 N449073f1c8a44beca6388ab6fd092040 rdf:first sg:person.010732545356.28
93 rdf:rest Nea974c3ba48247599754fa6442d28020
94 N7a180e279b2545118e08b0d3a3fa0198 schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 N869b61f8ca7647789fd792f777793878 schema:issueNumber 5
97 rdf:type schema:PublicationIssue
98 Ndbfd9b42bc9f4942b9d503d92ee7f97e schema:name dimensions_id
99 schema:value pub.1148254735
100 rdf:type schema:PropertyValue
101 Nea974c3ba48247599754fa6442d28020 rdf:first sg:person.016216701663.72
102 rdf:rest rdf:nil
103 Nf6760caef2c047b19342a511da03a155 schema:volumeNumber 22
104 rdf:type schema:PublicationVolume
105 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
106 schema:name Mathematical Sciences
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
109 schema:name Applied Mathematics
110 rdf:type schema:DefinedTerm
111 sg:journal.1271390 schema:issn 1109-2858
112 1866-1505
113 schema:name Operational Research
114 schema:publisher Springer Nature
115 rdf:type schema:Periodical
116 sg:person.010732545356.28 schema:affiliation grid-institutes:grid.411976.c
117 schema:familyName Ebrahimi
118 schema:givenName Seyed Babak
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010732545356.28
120 rdf:type schema:Person
121 sg:person.016216701663.72 schema:affiliation grid-institutes:grid.411976.c
122 schema:familyName Bagheri
123 schema:givenName Ehsan
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016216701663.72
125 rdf:type schema:Person
126 sg:pub.10.1007/s00170-017-1437-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099678222
127 https://doi.org/10.1007/s00170-017-1437-0
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s00291-011-0268-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021855618
130 https://doi.org/10.1007/s00291-011-0268-x
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s10107-003-0396-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045733404
133 https://doi.org/10.1007/s10107-003-0396-4
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s10107-012-0567-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020526241
136 https://doi.org/10.1007/s10107-012-0567-2
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s12351-018-0376-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100712857
139 https://doi.org/10.1007/s12351-018-0376-3
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s12351-018-0398-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1103159767
142 https://doi.org/10.1007/s12351-018-0398-x
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s12351-018-0443-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110580622
145 https://doi.org/10.1007/s12351-018-0443-9
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s12351-019-00494-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1114105160
148 https://doi.org/10.1007/s12351-019-00494-0
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s12351-020-00604-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131156851
151 https://doi.org/10.1007/s12351-020-00604-3
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s40092-016-0177-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000316090
154 https://doi.org/10.1007/s40092-016-0177-3
155 rdf:type schema:CreativeWork
156 grid-institutes:grid.411976.c schema:alternateName Financial Engineering Group, Faculty of Industrial Engineering, K. N. Toosi University of Technology, Pardis St. Molasadra Ave., Vanak Sq, P.O. Box 15875-4416, 19395-1999, Tehran, Iran
157 schema:name Financial Engineering Group, Faculty of Industrial Engineering, K. N. Toosi University of Technology, Pardis St. Molasadra Ave., Vanak Sq, P.O. Box 15875-4416, 19395-1999, Tehran, Iran
158 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...