Ontology type: schema:ScholarlyArticle
2017-07-13
AUTHORSAvhishek Chatterjee, Lei Ying, Sriram Vishwanath
ABSTRACTIn this electronic era, most businesses, especially e-businesses like IT services, business process outsourcing (BPO), online merchants etc. maintain details of daily operations and customer feedback. Relations between different business parameters can be learned from these data, which in turn can be used in decision making. In this work, we develop a stylized mathematical framework for business operations based on the knowledge gathered from past data. Our proposed framework is generic and is close to optimal in terms of long-term profitability. In optimizing long-term profit, we balance between short-term profit and long-term reputation earned based on customer satisfaction while ensuring trade secrecy. Towards this we build on stochastic control and Lyapunov techniques that have been successfully applied in communication networks. More... »
PAGES247-278
http://scigraph.springernature.com/pub.10.1007/s12351-017-0323-8
DOIhttp://dx.doi.org/10.1007/s12351-017-0323-8
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1090666074
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/15",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Commerce, Management, Tourism and Services",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information Systems",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1503",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Business and Management",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA",
"id": "http://www.grid.ac/institutes/grid.35403.31",
"name": [
"Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA"
],
"type": "Organization"
},
"familyName": "Chatterjee",
"givenName": "Avhishek",
"id": "sg:person.010664662640.70",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010664662640.70"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA",
"id": "http://www.grid.ac/institutes/grid.215654.1",
"name": [
"School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA"
],
"type": "Organization"
},
"familyName": "Ying",
"givenName": "Lei",
"id": "sg:person.014545140222.87",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014545140222.87"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA",
"id": "http://www.grid.ac/institutes/grid.89336.37",
"name": [
"Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA"
],
"type": "Organization"
},
"familyName": "Vishwanath",
"givenName": "Sriram",
"id": "sg:person.07427524155.04",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07427524155.04"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.2200/s00271ed1v01y201006cnt007",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069288153",
"https://doi.org/10.2200/s00271ed1v01y201006cnt007"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10683-006-4309-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003259568",
"https://doi.org/10.1007/s10683-006-4309-2"
],
"type": "CreativeWork"
}
],
"datePublished": "2017-07-13",
"datePublishedReg": "2017-07-13",
"description": "In this electronic era, most businesses, especially e-businesses like IT services, business process outsourcing (BPO), online merchants etc. maintain details of daily operations and customer feedback. Relations between different business parameters can be learned from these data, which in turn can be used in decision making. In this work, we develop a stylized mathematical framework for business operations based on the knowledge gathered from past data. Our proposed framework is generic and is close to optimal in terms of long-term profitability. In optimizing long-term profit, we balance between short-term profit and long-term reputation earned based on customer satisfaction while ensuring trade secrecy. Towards this we build on stochastic control and Lyapunov techniques that have been successfully applied in communication networks.",
"genre": "article",
"id": "sg:pub.10.1007/s12351-017-0323-8",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1271390",
"issn": [
"1109-2858",
"1866-1505"
],
"name": "Operational Research",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "20"
}
],
"keywords": [
"business operations",
"business processes",
"IT services",
"e-business",
"online merchants",
"business parameters",
"communication networks",
"customer feedback",
"control framework",
"long-term profitability",
"most businesses",
"short-term profits",
"long-term profit",
"long-term reputation",
"past data",
"electronic era",
"daily operations",
"trade secrecy",
"trading revenue",
"customer satisfaction",
"mathematical framework",
"decision making",
"trade secrets",
"framework",
"Lyapunov techniques",
"stochastic control framework",
"profit",
"reputation",
"operation",
"secrecy",
"network",
"secrets",
"services",
"business",
"profitability",
"revenue",
"data",
"feedback",
"stochastic control",
"satisfaction",
"making",
"merchants",
"technique",
"era",
"work",
"knowledge",
"detail",
"terms",
"process",
"turn",
"relation",
"parameters",
"control"
],
"name": "Trading revenue, reputation and trade secrets: a stochastic control framework for business operation",
"pagination": "247-278",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1090666074"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s12351-017-0323-8"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s12351-017-0323-8",
"https://app.dimensions.ai/details/publication/pub.1090666074"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T17:06",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_729.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s12351-017-0323-8"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12351-017-0323-8'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12351-017-0323-8'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12351-017-0323-8'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12351-017-0323-8'
This table displays all metadata directly associated to this object as RDF triples.
146 TRIPLES
21 PREDICATES
81 URIs
69 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s12351-017-0323-8 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0806 |
3 | ″ | ″ | anzsrc-for:15 |
4 | ″ | ″ | anzsrc-for:1503 |
5 | ″ | schema:author | Na307a1f740c44dd2a0ceea906a7d56ff |
6 | ″ | schema:citation | sg:pub.10.1007/s10683-006-4309-2 |
7 | ″ | ″ | sg:pub.10.2200/s00271ed1v01y201006cnt007 |
8 | ″ | schema:datePublished | 2017-07-13 |
9 | ″ | schema:datePublishedReg | 2017-07-13 |
10 | ″ | schema:description | In this electronic era, most businesses, especially e-businesses like IT services, business process outsourcing (BPO), online merchants etc. maintain details of daily operations and customer feedback. Relations between different business parameters can be learned from these data, which in turn can be used in decision making. In this work, we develop a stylized mathematical framework for business operations based on the knowledge gathered from past data. Our proposed framework is generic and is close to optimal in terms of long-term profitability. In optimizing long-term profit, we balance between short-term profit and long-term reputation earned based on customer satisfaction while ensuring trade secrecy. Towards this we build on stochastic control and Lyapunov techniques that have been successfully applied in communication networks. |
11 | ″ | schema:genre | article |
12 | ″ | schema:isAccessibleForFree | false |
13 | ″ | schema:isPartOf | N03c5299ba252427a808121f4d4aebd63 |
14 | ″ | ″ | N2b399bd920464551b7324d45eb4687c1 |
15 | ″ | ″ | sg:journal.1271390 |
16 | ″ | schema:keywords | IT services |
17 | ″ | ″ | Lyapunov techniques |
18 | ″ | ″ | business |
19 | ″ | ″ | business operations |
20 | ″ | ″ | business parameters |
21 | ″ | ″ | business processes |
22 | ″ | ″ | communication networks |
23 | ″ | ″ | control |
24 | ″ | ″ | control framework |
25 | ″ | ″ | customer feedback |
26 | ″ | ″ | customer satisfaction |
27 | ″ | ″ | daily operations |
28 | ″ | ″ | data |
29 | ″ | ″ | decision making |
30 | ″ | ″ | detail |
31 | ″ | ″ | e-business |
32 | ″ | ″ | electronic era |
33 | ″ | ″ | era |
34 | ″ | ″ | feedback |
35 | ″ | ″ | framework |
36 | ″ | ″ | knowledge |
37 | ″ | ″ | long-term profit |
38 | ″ | ″ | long-term profitability |
39 | ″ | ″ | long-term reputation |
40 | ″ | ″ | making |
41 | ″ | ″ | mathematical framework |
42 | ″ | ″ | merchants |
43 | ″ | ″ | most businesses |
44 | ″ | ″ | network |
45 | ″ | ″ | online merchants |
46 | ″ | ″ | operation |
47 | ″ | ″ | parameters |
48 | ″ | ″ | past data |
49 | ″ | ″ | process |
50 | ″ | ″ | profit |
51 | ″ | ″ | profitability |
52 | ″ | ″ | relation |
53 | ″ | ″ | reputation |
54 | ″ | ″ | revenue |
55 | ″ | ″ | satisfaction |
56 | ″ | ″ | secrecy |
57 | ″ | ″ | secrets |
58 | ″ | ″ | services |
59 | ″ | ″ | short-term profits |
60 | ″ | ″ | stochastic control |
61 | ″ | ″ | stochastic control framework |
62 | ″ | ″ | technique |
63 | ″ | ″ | terms |
64 | ″ | ″ | trade secrecy |
65 | ″ | ″ | trade secrets |
66 | ″ | ″ | trading revenue |
67 | ″ | ″ | turn |
68 | ″ | ″ | work |
69 | ″ | schema:name | Trading revenue, reputation and trade secrets: a stochastic control framework for business operation |
70 | ″ | schema:pagination | 247-278 |
71 | ″ | schema:productId | Nadcb1e3b77ab4474bfd76b0816f51086 |
72 | ″ | ″ | Ne50555a3870b4c1cbf3e992a4e50dda8 |
73 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1090666074 |
74 | ″ | ″ | https://doi.org/10.1007/s12351-017-0323-8 |
75 | ″ | schema:sdDatePublished | 2022-08-04T17:06 |
76 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
77 | ″ | schema:sdPublisher | Nd091f00962ee45f996b8eb19f4f41779 |
78 | ″ | schema:url | https://doi.org/10.1007/s12351-017-0323-8 |
79 | ″ | sgo:license | sg:explorer/license/ |
80 | ″ | sgo:sdDataset | articles |
81 | ″ | rdf:type | schema:ScholarlyArticle |
82 | N03c5299ba252427a808121f4d4aebd63 | schema:issueNumber | 1 |
83 | ″ | rdf:type | schema:PublicationIssue |
84 | N2b399bd920464551b7324d45eb4687c1 | schema:volumeNumber | 20 |
85 | ″ | rdf:type | schema:PublicationVolume |
86 | N5c37c14ff89341b69670f8e3cd7435ff | rdf:first | sg:person.014545140222.87 |
87 | ″ | rdf:rest | N663a3ace374443df854dce327902b5d0 |
88 | N663a3ace374443df854dce327902b5d0 | rdf:first | sg:person.07427524155.04 |
89 | ″ | rdf:rest | rdf:nil |
90 | Na307a1f740c44dd2a0ceea906a7d56ff | rdf:first | sg:person.010664662640.70 |
91 | ″ | rdf:rest | N5c37c14ff89341b69670f8e3cd7435ff |
92 | Nadcb1e3b77ab4474bfd76b0816f51086 | schema:name | doi |
93 | ″ | schema:value | 10.1007/s12351-017-0323-8 |
94 | ″ | rdf:type | schema:PropertyValue |
95 | Nd091f00962ee45f996b8eb19f4f41779 | schema:name | Springer Nature - SN SciGraph project |
96 | ″ | rdf:type | schema:Organization |
97 | Ne50555a3870b4c1cbf3e992a4e50dda8 | schema:name | dimensions_id |
98 | ″ | schema:value | pub.1090666074 |
99 | ″ | rdf:type | schema:PropertyValue |
100 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
101 | ″ | schema:name | Information and Computing Sciences |
102 | ″ | rdf:type | schema:DefinedTerm |
103 | anzsrc-for:0806 | schema:inDefinedTermSet | anzsrc-for: |
104 | ″ | schema:name | Information Systems |
105 | ″ | rdf:type | schema:DefinedTerm |
106 | anzsrc-for:15 | schema:inDefinedTermSet | anzsrc-for: |
107 | ″ | schema:name | Commerce, Management, Tourism and Services |
108 | ″ | rdf:type | schema:DefinedTerm |
109 | anzsrc-for:1503 | schema:inDefinedTermSet | anzsrc-for: |
110 | ″ | schema:name | Business and Management |
111 | ″ | rdf:type | schema:DefinedTerm |
112 | sg:journal.1271390 | schema:issn | 1109-2858 |
113 | ″ | ″ | 1866-1505 |
114 | ″ | schema:name | Operational Research |
115 | ″ | schema:publisher | Springer Nature |
116 | ″ | rdf:type | schema:Periodical |
117 | sg:person.010664662640.70 | schema:affiliation | grid-institutes:grid.35403.31 |
118 | ″ | schema:familyName | Chatterjee |
119 | ″ | schema:givenName | Avhishek |
120 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010664662640.70 |
121 | ″ | rdf:type | schema:Person |
122 | sg:person.014545140222.87 | schema:affiliation | grid-institutes:grid.215654.1 |
123 | ″ | schema:familyName | Ying |
124 | ″ | schema:givenName | Lei |
125 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014545140222.87 |
126 | ″ | rdf:type | schema:Person |
127 | sg:person.07427524155.04 | schema:affiliation | grid-institutes:grid.89336.37 |
128 | ″ | schema:familyName | Vishwanath |
129 | ″ | schema:givenName | Sriram |
130 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07427524155.04 |
131 | ″ | rdf:type | schema:Person |
132 | sg:pub.10.1007/s10683-006-4309-2 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1003259568 |
133 | ″ | ″ | https://doi.org/10.1007/s10683-006-4309-2 |
134 | ″ | rdf:type | schema:CreativeWork |
135 | sg:pub.10.2200/s00271ed1v01y201006cnt007 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1069288153 |
136 | ″ | ″ | https://doi.org/10.2200/s00271ed1v01y201006cnt007 |
137 | ″ | rdf:type | schema:CreativeWork |
138 | grid-institutes:grid.215654.1 | schema:alternateName | School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA |
139 | ″ | schema:name | School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA |
140 | ″ | rdf:type | schema:Organization |
141 | grid-institutes:grid.35403.31 | schema:alternateName | Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA |
142 | ″ | schema:name | Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA |
143 | ″ | rdf:type | schema:Organization |
144 | grid-institutes:grid.89336.37 | schema:alternateName | Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA |
145 | ″ | schema:name | Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA |
146 | ″ | rdf:type | schema:Organization |