Some two-agent single-machine scheduling problems to minimize minmax and minsum of completion times View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-07

AUTHORS

Xiaoling Cao, Wen-Hsing Wu, Wen-Hung Wu, Chin-Chia Wu

ABSTRACT

In this study we address several two-agent problems in which the measure criterion is to minimize the maximum cost or total weighted completion of all the jobs, while subject to an upper bound on the maximum cost of agent A. In term of minimizing the maximum cost of all the jobs subject to an upper bound on the maximum cost of agent A, we discuss some optimal properties and propose polynomial time solution algorithm to solve it. In term of minimizing the total weighted completion of all the jobs subject to an upper bound on the maximum cost of agent A, we analyze the complexity, show that this problem is NP-hard, and discuss it under special cases. In addition, for minimizing the total weighted completion of all the jobs subject to an upper bound on the makespan of agent A, we derive some dominance rules to be used in a branch-and-bound method and propose a heuristic for finding the optimal and near-optimal solution, respectively. A computational simulation is also provided to determine the performance of the proposed algorithms. More... »

PAGES

293-314

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12351-016-0265-6

DOI

http://dx.doi.org/10.1007/s12351-016-0265-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015063470


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yangtze University", 
          "id": "https://www.grid.ac/institutes/grid.410654.2", 
          "name": [
            "School of Information and Mathematics, Yangtze University, 434023, Jingzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cao", 
        "givenName": "Xiaoling", 
        "id": "sg:person.010424316076.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010424316076.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yuanpei University", 
          "id": "https://www.grid.ac/institutes/grid.413051.2", 
          "name": [
            "Department of Healthcare Management, Yuanpei University, Hsinchu, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Wen-Hsing", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Business Administration, Kang-Ning University, Taipei, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Wen-Hung", 
        "id": "sg:person.015611300311.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015611300311.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Feng Chia University", 
          "id": "https://www.grid.ac/institutes/grid.411298.7", 
          "name": [
            "Department of Statistics, Feng Chia University, Taichung, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Chin-Chia", 
        "id": "sg:person.012252405701.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012252405701.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ejor.2007.04.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000167785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1000592077", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-41880-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000592077", 
          "https://doi.org/10.1007/978-3-642-41880-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-41880-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000592077", 
          "https://doi.org/10.1007/978-3-642-41880-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12351-016-0253-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002801729", 
          "https://doi.org/10.1007/s12351-016-0253-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12351-016-0253-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002801729", 
          "https://doi.org/10.1007/s12351-016-0253-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10878-011-9378-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006925766", 
          "https://doi.org/10.1007/s10878-011-9378-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ipl.2009.04.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008186367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10479-006-0164-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008259771", 
          "https://doi.org/10.1007/s10479-006-0164-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10479-006-0164-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008259771", 
          "https://doi.org/10.1007/s10479-006-0164-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nav.21684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008639680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cor.2016.04.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010194177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cor.2011.09.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011587326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2012.09.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012796337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cor.2012.03.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014771450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2015.05.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018473702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10845-011-0525-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020297925", 
          "https://doi.org/10.1007/s10845-011-0525-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2010.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021215208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10878-016-0017-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024209075", 
          "https://doi.org/10.1007/s10878-016-0017-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cie.2010.12.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025958173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijpe.2013.01.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029074943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cie.2015.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032304173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nav.20138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034839180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nav.20138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034839180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.omega.2015.09.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038813916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijpe.2014.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040511092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2015.10.059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041301521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1022231419049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042693869", 
          "https://doi.org/10.1023/a:1022231419049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10878-006-9001-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043813919", 
          "https://doi.org/10.1007/s10878-006-9001-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2010.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046097719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tcs.2006.07.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046349461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apm.2012.04.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046957621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2016.01.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050600193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12351-016-0252-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051014645", 
          "https://doi.org/10.1007/s12351-016-0252-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12351-016-0252-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051014645", 
          "https://doi.org/10.1007/s12351-016-0252-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10951-008-0098-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051501798", 
          "https://doi.org/10.1007/s10951-008-0098-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.2015.2505644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061794473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.1030.0092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064725570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.1030.0092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064725570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijstl.2011.040800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067495573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijstl.2013.050590", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067495607"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-07", 
    "datePublishedReg": "2018-07-01", 
    "description": "In this study we address several two-agent problems in which the measure criterion is to minimize the maximum cost or total weighted completion of all the jobs, while subject to an upper bound on the maximum cost of agent A. In term of minimizing the maximum cost of all the jobs subject to an upper bound on the maximum cost of agent A, we discuss some optimal properties and propose polynomial time solution algorithm to solve it. In term of minimizing the total weighted completion of all the jobs subject to an upper bound on the maximum cost of agent A, we analyze the complexity, show that this problem is NP-hard, and discuss it under special cases. In addition, for minimizing the total weighted completion of all the jobs subject to an upper bound on the makespan of agent A, we derive some dominance rules to be used in a branch-and-bound method and propose a heuristic for finding the optimal and near-optimal solution, respectively. A computational simulation is also provided to determine the performance of the proposed algorithms.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12351-016-0265-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1271390", 
        "issn": [
          "1109-2858", 
          "1866-1505"
        ], 
        "name": "Operational Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Some two-agent single-machine scheduling problems to minimize minmax and minsum of completion times", 
    "pagination": "293-314", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "47c46618f387709e7207c262e72d34be6fb00abfd4fe8ec43f1821601a7b8784"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12351-016-0265-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015063470"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12351-016-0265-6", 
      "https://app.dimensions.ai/details/publication/pub.1015063470"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89807_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12351-016-0265-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12351-016-0265-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12351-016-0265-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12351-016-0265-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12351-016-0265-6'


 

This table displays all metadata directly associated to this object as RDF triples.

203 TRIPLES      21 PREDICATES      62 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12351-016-0265-6 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author N42790edcbe384774a23b32945045e344
4 schema:citation sg:pub.10.1007/978-3-642-41880-8
5 sg:pub.10.1007/s10479-006-0164-y
6 sg:pub.10.1007/s10845-011-0525-5
7 sg:pub.10.1007/s10878-006-9001-0
8 sg:pub.10.1007/s10878-011-9378-2
9 sg:pub.10.1007/s10878-016-0017-9
10 sg:pub.10.1007/s10951-008-0098-0
11 sg:pub.10.1007/s12351-016-0252-y
12 sg:pub.10.1007/s12351-016-0253-x
13 sg:pub.10.1023/a:1022231419049
14 https://app.dimensions.ai/details/publication/pub.1000592077
15 https://doi.org/10.1002/nav.20138
16 https://doi.org/10.1002/nav.21684
17 https://doi.org/10.1016/j.amc.2015.10.059
18 https://doi.org/10.1016/j.apm.2012.04.009
19 https://doi.org/10.1016/j.asoc.2012.09.026
20 https://doi.org/10.1016/j.asoc.2015.05.027
21 https://doi.org/10.1016/j.cie.2010.12.008
22 https://doi.org/10.1016/j.cie.2015.12.003
23 https://doi.org/10.1016/j.cor.2011.09.018
24 https://doi.org/10.1016/j.cor.2012.03.012
25 https://doi.org/10.1016/j.cor.2016.04.021
26 https://doi.org/10.1016/j.ejor.2007.04.040
27 https://doi.org/10.1016/j.ejor.2010.01.005
28 https://doi.org/10.1016/j.ejor.2010.03.003
29 https://doi.org/10.1016/j.ejor.2016.01.009
30 https://doi.org/10.1016/j.ijpe.2013.01.025
31 https://doi.org/10.1016/j.ijpe.2014.05.004
32 https://doi.org/10.1016/j.ipl.2009.04.018
33 https://doi.org/10.1016/j.omega.2015.09.010
34 https://doi.org/10.1016/j.tcs.2006.07.011
35 https://doi.org/10.1109/tsmc.2015.2505644
36 https://doi.org/10.1287/opre.1030.0092
37 https://doi.org/10.1504/ijstl.2011.040800
38 https://doi.org/10.1504/ijstl.2013.050590
39 schema:datePublished 2018-07
40 schema:datePublishedReg 2018-07-01
41 schema:description In this study we address several two-agent problems in which the measure criterion is to minimize the maximum cost or total weighted completion of all the jobs, while subject to an upper bound on the maximum cost of agent A. In term of minimizing the maximum cost of all the jobs subject to an upper bound on the maximum cost of agent A, we discuss some optimal properties and propose polynomial time solution algorithm to solve it. In term of minimizing the total weighted completion of all the jobs subject to an upper bound on the maximum cost of agent A, we analyze the complexity, show that this problem is NP-hard, and discuss it under special cases. In addition, for minimizing the total weighted completion of all the jobs subject to an upper bound on the makespan of agent A, we derive some dominance rules to be used in a branch-and-bound method and propose a heuristic for finding the optimal and near-optimal solution, respectively. A computational simulation is also provided to determine the performance of the proposed algorithms.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree false
45 schema:isPartOf N410020d1bf38469bb557ccfd554d100b
46 Nd32a66d3e34b4ffdb0498a085e14d157
47 sg:journal.1271390
48 schema:name Some two-agent single-machine scheduling problems to minimize minmax and minsum of completion times
49 schema:pagination 293-314
50 schema:productId N10d24b5515cb4c3d8b7effee40a91440
51 N316882b773a2460bbcf7dcb9839547ff
52 N87ce8476895d486d9517d0f725717867
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015063470
54 https://doi.org/10.1007/s12351-016-0265-6
55 schema:sdDatePublished 2019-04-11T09:57
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher Na59ff16669b94bccb48ca90b3bf2e1b2
58 schema:url https://link.springer.com/10.1007%2Fs12351-016-0265-6
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N00cf6db275cc4bcfb9a50276fa79b836 rdf:first sg:person.015611300311.17
63 rdf:rest N96d2dc2fb8524ddaba36fb58933c28b4
64 N10d24b5515cb4c3d8b7effee40a91440 schema:name doi
65 schema:value 10.1007/s12351-016-0265-6
66 rdf:type schema:PropertyValue
67 N316882b773a2460bbcf7dcb9839547ff schema:name dimensions_id
68 schema:value pub.1015063470
69 rdf:type schema:PropertyValue
70 N410020d1bf38469bb557ccfd554d100b schema:issueNumber 2
71 rdf:type schema:PublicationIssue
72 N42790edcbe384774a23b32945045e344 rdf:first sg:person.010424316076.51
73 rdf:rest N48c559cf3dec4c078955aad94f5a2000
74 N48c559cf3dec4c078955aad94f5a2000 rdf:first Nf3513ad5f13c48d99cbadd83746619d4
75 rdf:rest N00cf6db275cc4bcfb9a50276fa79b836
76 N87ce8476895d486d9517d0f725717867 schema:name readcube_id
77 schema:value 47c46618f387709e7207c262e72d34be6fb00abfd4fe8ec43f1821601a7b8784
78 rdf:type schema:PropertyValue
79 N96d2dc2fb8524ddaba36fb58933c28b4 rdf:first sg:person.012252405701.58
80 rdf:rest rdf:nil
81 Na59ff16669b94bccb48ca90b3bf2e1b2 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 Nd32a66d3e34b4ffdb0498a085e14d157 schema:volumeNumber 18
84 rdf:type schema:PublicationVolume
85 Ne8fdd10e220e4b2fb3ac3091bbd209ad schema:name Department of Business Administration, Kang-Ning University, Taipei, Taiwan
86 rdf:type schema:Organization
87 Nf3513ad5f13c48d99cbadd83746619d4 schema:affiliation https://www.grid.ac/institutes/grid.413051.2
88 schema:familyName Wu
89 schema:givenName Wen-Hsing
90 rdf:type schema:Person
91 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
92 schema:name Information and Computing Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
95 schema:name Computation Theory and Mathematics
96 rdf:type schema:DefinedTerm
97 sg:journal.1271390 schema:issn 1109-2858
98 1866-1505
99 schema:name Operational Research
100 rdf:type schema:Periodical
101 sg:person.010424316076.51 schema:affiliation https://www.grid.ac/institutes/grid.410654.2
102 schema:familyName Cao
103 schema:givenName Xiaoling
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010424316076.51
105 rdf:type schema:Person
106 sg:person.012252405701.58 schema:affiliation https://www.grid.ac/institutes/grid.411298.7
107 schema:familyName Wu
108 schema:givenName Chin-Chia
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012252405701.58
110 rdf:type schema:Person
111 sg:person.015611300311.17 schema:affiliation Ne8fdd10e220e4b2fb3ac3091bbd209ad
112 schema:familyName Wu
113 schema:givenName Wen-Hung
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015611300311.17
115 rdf:type schema:Person
116 sg:pub.10.1007/978-3-642-41880-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000592077
117 https://doi.org/10.1007/978-3-642-41880-8
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s10479-006-0164-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1008259771
120 https://doi.org/10.1007/s10479-006-0164-y
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s10845-011-0525-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020297925
123 https://doi.org/10.1007/s10845-011-0525-5
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s10878-006-9001-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043813919
126 https://doi.org/10.1007/s10878-006-9001-0
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s10878-011-9378-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006925766
129 https://doi.org/10.1007/s10878-011-9378-2
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s10878-016-0017-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024209075
132 https://doi.org/10.1007/s10878-016-0017-9
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s10951-008-0098-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051501798
135 https://doi.org/10.1007/s10951-008-0098-0
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s12351-016-0252-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1051014645
138 https://doi.org/10.1007/s12351-016-0252-y
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s12351-016-0253-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002801729
141 https://doi.org/10.1007/s12351-016-0253-x
142 rdf:type schema:CreativeWork
143 sg:pub.10.1023/a:1022231419049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042693869
144 https://doi.org/10.1023/a:1022231419049
145 rdf:type schema:CreativeWork
146 https://app.dimensions.ai/details/publication/pub.1000592077 schema:CreativeWork
147 https://doi.org/10.1002/nav.20138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034839180
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1002/nav.21684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008639680
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.amc.2015.10.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041301521
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.apm.2012.04.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046957621
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.asoc.2012.09.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012796337
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.asoc.2015.05.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018473702
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.cie.2010.12.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025958173
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.cie.2015.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032304173
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.cor.2011.09.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011587326
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.cor.2012.03.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014771450
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.cor.2016.04.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010194177
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.ejor.2007.04.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000167785
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.ejor.2010.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046097719
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.ejor.2010.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021215208
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.ejor.2016.01.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050600193
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.ijpe.2013.01.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029074943
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.ijpe.2014.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040511092
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.ipl.2009.04.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008186367
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.omega.2015.09.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038813916
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.tcs.2006.07.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046349461
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1109/tsmc.2015.2505644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061794473
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1287/opre.1030.0092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064725570
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1504/ijstl.2011.040800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067495573
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1504/ijstl.2013.050590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067495607
194 rdf:type schema:CreativeWork
195 https://www.grid.ac/institutes/grid.410654.2 schema:alternateName Yangtze University
196 schema:name School of Information and Mathematics, Yangtze University, 434023, Jingzhou, China
197 rdf:type schema:Organization
198 https://www.grid.ac/institutes/grid.411298.7 schema:alternateName Feng Chia University
199 schema:name Department of Statistics, Feng Chia University, Taichung, Taiwan
200 rdf:type schema:Organization
201 https://www.grid.ac/institutes/grid.413051.2 schema:alternateName Yuanpei University
202 schema:name Department of Healthcare Management, Yuanpei University, Hsinchu, Taiwan
203 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...