Assessing the qualitative and quantitative impacts of simple two-class vs multiple tissue-class MR-based attenuation correction for cardiac PET/MR View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2020-01-02

AUTHORS

Philip M. Robson, Vittoria Vergani, Thomas Benkert, Maria Giovanna Trivieri, Nicolas A. Karakatsanis, Ronan Abgral, Marc R. Dweck, Pedro R. Moreno, Jason C. Kovacic, Kai Tobias Block, Zahi A. Fayad

ABSTRACT

BackgroundHybrid PET/MR imaging has significant potential in cardiology due to its combination of molecular PET imaging and cardiac MR. Multi-tissue-class MR-based attenuation correction (MRAC) is necessary for accurate PET quantification. Moreover, for thoracic PET imaging, respiration is known to lead to misalignments of MRAC and PET data that result in PET artifacts. These factors can be addressed by using multi-echo MR for tissue segmentation and motion-robust or motion-gated acquisitions. However, the combination of these strategies is not routinely available and can be prone to errors. In this study, we examine the qualitative and quantitative impacts of multi-class MRAC compared to a more widely available simple two-class MRAC for cardiac PET/MR.Methods and ResultsIn a cohort of patients with cardiac sarcoidosis, we acquired MRAC data using multi-echo radial gradient-echo MR imaging. Water-fat separation was used to produce attenuation maps with up to 4 tissue classes including water-based soft tissue, fat, lung, and background air. Simultaneously acquired 18F-fluorodeoxyglucose PET data were subsequently reconstructed using each attenuation map separately. PET uptake values were measured in the myocardium and compared between different PET images. The inclusion of lung and subcutaneous fat in the MRAC maps significantly affected the quantification of 18F-fluorodeoxyglucose activity in the myocardium but only moderately altered the appearance of the PET image without introduction of image artifacts.ConclusionOptimal MRAC for cardiac PET/MR applications should include segmentation of all tissues in combination with compensation for the respiratory-related motion of the heart. Simple two-class MRAC is adequate for qualitative clinical assessment. More... »

PAGES

2194-2204

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12350-019-02002-5

DOI

http://dx.doi.org/10.1007/s12350-019-02002-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1123785495

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/31898004


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cohort Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorodeoxyglucose F18", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heart", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron Emission Tomography Computed Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiopharmaceuticals", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Translational and Molecular Imaging Institute, Leon and Norma Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, One Gustave Levy Pl, 1470 Madison Ave, TMII \u2013 1st floor, 10029, New York, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.59734.3c", 
          "name": [
            "Translational and Molecular Imaging Institute, Leon and Norma Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, One Gustave Levy Pl, 1470 Madison Ave, TMII \u2013 1st floor, 10029, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Robson", 
        "givenName": "Philip M.", 
        "id": "sg:person.0701551334.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701551334.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cardiothoracic and Vascular Department, Vita-Salute University and San Raffaele Hospital, Milan, Italy", 
          "id": "http://www.grid.ac/institutes/grid.15496.3f", 
          "name": [
            "Translational and Molecular Imaging Institute, Leon and Norma Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, One Gustave Levy Pl, 1470 Madison Ave, TMII \u2013 1st floor, 10029, New York, NY, USA", 
            "Cardiothoracic and Vascular Department, Vita-Salute University and San Raffaele Hospital, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vergani", 
        "givenName": "Vittoria", 
        "id": "sg:person.013302112573.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013302112573.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.137628.9", 
          "name": [
            "Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University School of Medicine, New York, NY, USA", 
            "Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Benkert", 
        "givenName": "Thomas", 
        "id": "sg:person.012675750435.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012675750435.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Pl, 10029, New York, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.59734.3c", 
          "name": [
            "Translational and Molecular Imaging Institute, Leon and Norma Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, One Gustave Levy Pl, 1470 Madison Ave, TMII \u2013 1st floor, 10029, New York, NY, USA", 
            "Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Pl, 10029, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Trivieri", 
        "givenName": "Maria Giovanna", 
        "id": "sg:person.01330727704.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330727704.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Radiopharmaceutical Sciences, Department of Radiology, Weill Cornell Medical College, Cornell University, New York, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Translational and Molecular Imaging Institute, Leon and Norma Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, One Gustave Levy Pl, 1470 Madison Ave, TMII \u2013 1st floor, 10029, New York, NY, USA", 
            "Division of Radiopharmaceutical Sciences, Department of Radiology, Weill Cornell Medical College, Cornell University, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karakatsanis", 
        "givenName": "Nicolas A.", 
        "id": "sg:person.01016541331.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016541331.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, University Hospital of Brest, European University of Brittany, EA3878 GETBO, Brest, France", 
          "id": "http://www.grid.ac/institutes/grid.411766.3", 
          "name": [
            "Department of Nuclear Medicine, University Hospital of Brest, European University of Brittany, EA3878 GETBO, Brest, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abgral", 
        "givenName": "Ronan", 
        "id": "sg:person.01310147073.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310147073.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK", 
          "id": "http://www.grid.ac/institutes/grid.511179.a", 
          "name": [
            "British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dweck", 
        "givenName": "Marc R.", 
        "id": "sg:person.01320530175.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320530175.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Pl, 10029, New York, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.59734.3c", 
          "name": [
            "Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Pl, 10029, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moreno", 
        "givenName": "Pedro R.", 
        "id": "sg:person.01144544053.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144544053.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Pl, 10029, New York, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.59734.3c", 
          "name": [
            "Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Pl, 10029, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kovacic", 
        "givenName": "Jason C.", 
        "id": "sg:person.0767760340.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767760340.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.137628.9", 
          "name": [
            "Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University School of Medicine, New York, NY, USA", 
            "Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Block", 
        "givenName": "Kai Tobias", 
        "id": "sg:person.01157142341.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157142341.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Translational and Molecular Imaging Institute, Leon and Norma Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, One Gustave Levy Pl, 1470 Madison Ave, TMII \u2013 1st floor, 10029, New York, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.59734.3c", 
          "name": [
            "Translational and Molecular Imaging Institute, Leon and Norma Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, One Gustave Levy Pl, 1470 Madison Ave, TMII \u2013 1st floor, 10029, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fayad", 
        "givenName": "Zahi A.", 
        "id": "sg:person.0772637666.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772637666.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s12350-015-0159-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032263638", 
          "https://doi.org/10.1007/s12350-015-0159-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12350-016-0451-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007519693", 
          "https://doi.org/10.1007/s12350-016-0451-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11307-013-0629-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015514428", 
          "https://doi.org/10.1007/s11307-013-0629-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12350-019-01928-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1122202093", 
          "https://doi.org/10.1007/s12350-019-01928-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12350-017-1118-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092898866", 
          "https://doi.org/10.1007/s12350-017-1118-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-015-3060-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041845590", 
          "https://doi.org/10.1007/s00259-015-3060-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12350-015-0197-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010708313", 
          "https://doi.org/10.1007/s12350-015-0197-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-015-3089-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050739103", 
          "https://doi.org/10.1007/s00259-015-3089-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40658-014-0101-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049937272", 
          "https://doi.org/10.1186/s40658-014-0101-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-01-02", 
    "datePublishedReg": "2020-01-02", 
    "description": "BackgroundHybrid PET/MR imaging has significant potential in cardiology due to its combination of molecular PET imaging and cardiac MR. Multi-tissue-class MR-based attenuation correction (MRAC) is necessary for accurate PET quantification. Moreover, for thoracic PET imaging, respiration is known to lead to misalignments of MRAC and PET data that result in PET artifacts. These factors can be addressed by using multi-echo MR for tissue segmentation and motion-robust or motion-gated acquisitions. However, the combination of these strategies is not routinely available and can be prone to errors. In this study, we examine the qualitative and quantitative impacts of multi-class MRAC compared to a more widely available simple two-class MRAC for cardiac PET/MR.Methods and ResultsIn a cohort of patients with cardiac sarcoidosis, we acquired MRAC data using multi-echo radial gradient-echo MR imaging. Water-fat separation was used to produce attenuation maps with up to 4 tissue classes including water-based soft tissue, fat, lung, and background air. Simultaneously acquired 18F-fluorodeoxyglucose PET data were subsequently reconstructed using each attenuation map separately. PET uptake values were measured in the myocardium and compared between different PET images. The inclusion of lung and subcutaneous fat in the MRAC maps significantly affected the quantification of 18F-fluorodeoxyglucose activity in the myocardium but only moderately altered the appearance of the PET image without introduction of image artifacts.ConclusionOptimal MRAC for cardiac PET/MR applications should include segmentation of all tissues in combination with compensation for the respiratory-related motion of the heart. Simple two-class MRAC is adequate for qualitative clinical assessment.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12350-019-02002-5", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2538827", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5141674", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1106202", 
        "issn": [
          "1071-3581", 
          "1532-6551"
        ], 
        "name": "Journal of Nuclear Cardiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "keywords": [
      "water-fat separation", 
      "MRAC", 
      "thoracic PET imaging", 
      "PET/MR applications", 
      "MRAC maps", 
      "MR applications", 
      "image artifacts", 
      "significant potential", 
      "accurate PET quantification", 
      "background air", 
      "soft tissue", 
      "air", 
      "MR imaging", 
      "PET imaging", 
      "cohort of patients", 
      "quantitative impact", 
      "PET/MR", 
      "attenuation correction", 
      "motion", 
      "PET artifacts", 
      "gradient-echo MR imaging", 
      "qualitative clinical assessment", 
      "misalignment", 
      "compensation", 
      "cardiac sarcoidosis", 
      "attenuation map", 
      "PET uptake values", 
      "separation", 
      "clinical assessment", 
      "applications", 
      "uptake value", 
      "PET images", 
      "combination", 
      "images", 
      "error", 
      "subcutaneous fat", 
      "PET data", 
      "attenuation", 
      "PET/MR imaging", 
      "maps", 
      "cardiac MR", 
      "quantification", 
      "lung", 
      "method", 
      "molecular PET imaging", 
      "myocardium", 
      "correction", 
      "tissue classes", 
      "artifacts", 
      "imaging", 
      "tissue segmentation", 
      "MR", 
      "fat", 
      "PET quantification", 
      "impact", 
      "tissue", 
      "values", 
      "data", 
      "potential", 
      "sarcoidosis", 
      "patients", 
      "segmentation", 
      "cohort", 
      "ResultsIn", 
      "respiratory", 
      "cardiology", 
      "heart", 
      "introduction", 
      "strategies", 
      "two-class", 
      "inclusion", 
      "acquisition", 
      "assessment", 
      "study", 
      "factors", 
      "activity", 
      "appearance", 
      "respiration", 
      "class"
    ], 
    "name": "Assessing the qualitative and quantitative impacts of simple two-class vs multiple tissue-class MR-based attenuation correction for cardiac PET/MR", 
    "pagination": "2194-2204", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1123785495"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12350-019-02002-5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "31898004"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12350-019-02002-5", 
      "https://app.dimensions.ai/details/publication/pub.1123785495"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T17:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_872.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12350-019-02002-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12350-019-02002-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12350-019-02002-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12350-019-02002-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12350-019-02002-5'


 

This table displays all metadata directly associated to this object as RDF triples.

314 TRIPLES      21 PREDICATES      124 URIs      107 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12350-019-02002-5 schema:about N39f624be3d38417090db00f5ba86032e
2 N3d05c63c564e49519c0bfeb219b185e0
3 N672e42acba47436895fba34ad4d5cdfd
4 N675324adf51440a6986eb25182599602
5 N796c58a9cb7245ddba7b6d9686faa3cf
6 N90606d18c5234c98aff04c2bbc456190
7 N91d17b6b1426499aa31077e3773d38e1
8 Nb38d7a91b9b647869cb713ba6d044f99
9 Ne496524bbf4e46c8af7629f7d72599cc
10 Ne8ac257529dd4d1d8d09837ff148c0f6
11 Nf1b3eed308d04defb47ca6c1a7502dbc
12 anzsrc-for:11
13 anzsrc-for:1102
14 schema:author N7ea03b6223664ec29579f5a9a67dcce4
15 schema:citation sg:pub.10.1007/s00259-015-3060-3
16 sg:pub.10.1007/s00259-015-3089-3
17 sg:pub.10.1007/s11307-013-0629-8
18 sg:pub.10.1007/s12350-015-0159-7
19 sg:pub.10.1007/s12350-015-0197-1
20 sg:pub.10.1007/s12350-016-0451-1
21 sg:pub.10.1007/s12350-017-1118-2
22 sg:pub.10.1007/s12350-019-01928-0
23 sg:pub.10.1186/s40658-014-0101-0
24 schema:datePublished 2020-01-02
25 schema:datePublishedReg 2020-01-02
26 schema:description BackgroundHybrid PET/MR imaging has significant potential in cardiology due to its combination of molecular PET imaging and cardiac MR. Multi-tissue-class MR-based attenuation correction (MRAC) is necessary for accurate PET quantification. Moreover, for thoracic PET imaging, respiration is known to lead to misalignments of MRAC and PET data that result in PET artifacts. These factors can be addressed by using multi-echo MR for tissue segmentation and motion-robust or motion-gated acquisitions. However, the combination of these strategies is not routinely available and can be prone to errors. In this study, we examine the qualitative and quantitative impacts of multi-class MRAC compared to a more widely available simple two-class MRAC for cardiac PET/MR.Methods and ResultsIn a cohort of patients with cardiac sarcoidosis, we acquired MRAC data using multi-echo radial gradient-echo MR imaging. Water-fat separation was used to produce attenuation maps with up to 4 tissue classes including water-based soft tissue, fat, lung, and background air. Simultaneously acquired 18F-fluorodeoxyglucose PET data were subsequently reconstructed using each attenuation map separately. PET uptake values were measured in the myocardium and compared between different PET images. The inclusion of lung and subcutaneous fat in the MRAC maps significantly affected the quantification of 18F-fluorodeoxyglucose activity in the myocardium but only moderately altered the appearance of the PET image without introduction of image artifacts.ConclusionOptimal MRAC for cardiac PET/MR applications should include segmentation of all tissues in combination with compensation for the respiratory-related motion of the heart. Simple two-class MRAC is adequate for qualitative clinical assessment.
27 schema:genre article
28 schema:isAccessibleForFree false
29 schema:isPartOf N83cdc282cedc4bc4bef9dd83c37e9cfc
30 Neb647e28de074ff088a9394fd8cebb5b
31 sg:journal.1106202
32 schema:keywords MR
33 MR applications
34 MR imaging
35 MRAC
36 MRAC maps
37 PET artifacts
38 PET data
39 PET images
40 PET imaging
41 PET quantification
42 PET uptake values
43 PET/MR
44 PET/MR applications
45 PET/MR imaging
46 ResultsIn
47 accurate PET quantification
48 acquisition
49 activity
50 air
51 appearance
52 applications
53 artifacts
54 assessment
55 attenuation
56 attenuation correction
57 attenuation map
58 background air
59 cardiac MR
60 cardiac sarcoidosis
61 cardiology
62 class
63 clinical assessment
64 cohort
65 cohort of patients
66 combination
67 compensation
68 correction
69 data
70 error
71 factors
72 fat
73 gradient-echo MR imaging
74 heart
75 image artifacts
76 images
77 imaging
78 impact
79 inclusion
80 introduction
81 lung
82 maps
83 method
84 misalignment
85 molecular PET imaging
86 motion
87 myocardium
88 patients
89 potential
90 qualitative clinical assessment
91 quantification
92 quantitative impact
93 respiration
94 respiratory
95 sarcoidosis
96 segmentation
97 separation
98 significant potential
99 soft tissue
100 strategies
101 study
102 subcutaneous fat
103 thoracic PET imaging
104 tissue
105 tissue classes
106 tissue segmentation
107 two-class
108 uptake value
109 values
110 water-fat separation
111 schema:name Assessing the qualitative and quantitative impacts of simple two-class vs multiple tissue-class MR-based attenuation correction for cardiac PET/MR
112 schema:pagination 2194-2204
113 schema:productId N5494d706b329488c948bb991197d7a31
114 Nb20938cc0a114491bfb407757c71e330
115 Necc5c7dbd94e441eb221674e5ea80b19
116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123785495
117 https://doi.org/10.1007/s12350-019-02002-5
118 schema:sdDatePublished 2022-08-04T17:10
119 schema:sdLicense https://scigraph.springernature.com/explorer/license/
120 schema:sdPublisher Nefb11b4228ef4ababf4ca6e508a548df
121 schema:url https://doi.org/10.1007/s12350-019-02002-5
122 sgo:license sg:explorer/license/
123 sgo:sdDataset articles
124 rdf:type schema:ScholarlyArticle
125 N067afe6aa2794c64bee26925f28582e5 rdf:first sg:person.01320530175.66
126 rdf:rest N0aa6d68030b44921adb7802038600307
127 N0aa6d68030b44921adb7802038600307 rdf:first sg:person.01144544053.52
128 rdf:rest N2c68081fc0244c28846ba10bad4775ed
129 N1ea56b908aee41ffb18c67385d703dc9 rdf:first sg:person.013302112573.56
130 rdf:rest N850d6861f64747228020e71732da2be2
131 N2c68081fc0244c28846ba10bad4775ed rdf:first sg:person.0767760340.89
132 rdf:rest N637ce2e7896b4e3d9d5d23dafc2ab0cb
133 N30ad5fa7e70d46b3942dd75b1cc9814a rdf:first sg:person.0772637666.38
134 rdf:rest rdf:nil
135 N3942af2dac224c6a878b318fb71b40ae rdf:first sg:person.01330727704.39
136 rdf:rest Nb0bcb9408b1f48dd96976e9e74b97b1c
137 N39f624be3d38417090db00f5ba86032e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Magnetic Resonance Angiography
139 rdf:type schema:DefinedTerm
140 N3d05c63c564e49519c0bfeb219b185e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Positron Emission Tomography Computed Tomography
142 rdf:type schema:DefinedTerm
143 N5494d706b329488c948bb991197d7a31 schema:name doi
144 schema:value 10.1007/s12350-019-02002-5
145 rdf:type schema:PropertyValue
146 N637ce2e7896b4e3d9d5d23dafc2ab0cb rdf:first sg:person.01157142341.97
147 rdf:rest N30ad5fa7e70d46b3942dd75b1cc9814a
148 N672e42acba47436895fba34ad4d5cdfd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Radiopharmaceuticals
150 rdf:type schema:DefinedTerm
151 N675324adf51440a6986eb25182599602 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Middle Aged
153 rdf:type schema:DefinedTerm
154 N796c58a9cb7245ddba7b6d9686faa3cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Fluorodeoxyglucose F18
156 rdf:type schema:DefinedTerm
157 N7ea03b6223664ec29579f5a9a67dcce4 rdf:first sg:person.0701551334.41
158 rdf:rest N1ea56b908aee41ffb18c67385d703dc9
159 N82b753de646543d6baaccab09bb8d305 rdf:first sg:person.01310147073.34
160 rdf:rest N067afe6aa2794c64bee26925f28582e5
161 N83cdc282cedc4bc4bef9dd83c37e9cfc schema:issueNumber 5
162 rdf:type schema:PublicationIssue
163 N850d6861f64747228020e71732da2be2 rdf:first sg:person.012675750435.21
164 rdf:rest N3942af2dac224c6a878b318fb71b40ae
165 N90606d18c5234c98aff04c2bbc456190 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Cohort Studies
167 rdf:type schema:DefinedTerm
168 N91d17b6b1426499aa31077e3773d38e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Male
170 rdf:type schema:DefinedTerm
171 Nb0bcb9408b1f48dd96976e9e74b97b1c rdf:first sg:person.01016541331.85
172 rdf:rest N82b753de646543d6baaccab09bb8d305
173 Nb20938cc0a114491bfb407757c71e330 schema:name dimensions_id
174 schema:value pub.1123785495
175 rdf:type schema:PropertyValue
176 Nb38d7a91b9b647869cb713ba6d044f99 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Female
178 rdf:type schema:DefinedTerm
179 Ne496524bbf4e46c8af7629f7d72599cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Humans
181 rdf:type schema:DefinedTerm
182 Ne8ac257529dd4d1d8d09837ff148c0f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Heart
184 rdf:type schema:DefinedTerm
185 Neb647e28de074ff088a9394fd8cebb5b schema:volumeNumber 28
186 rdf:type schema:PublicationVolume
187 Necc5c7dbd94e441eb221674e5ea80b19 schema:name pubmed_id
188 schema:value 31898004
189 rdf:type schema:PropertyValue
190 Nefb11b4228ef4ababf4ca6e508a548df schema:name Springer Nature - SN SciGraph project
191 rdf:type schema:Organization
192 Nf1b3eed308d04defb47ca6c1a7502dbc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
193 schema:name Aged
194 rdf:type schema:DefinedTerm
195 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
196 schema:name Medical and Health Sciences
197 rdf:type schema:DefinedTerm
198 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
199 schema:name Cardiorespiratory Medicine and Haematology
200 rdf:type schema:DefinedTerm
201 sg:grant.2538827 http://pending.schema.org/fundedItem sg:pub.10.1007/s12350-019-02002-5
202 rdf:type schema:MonetaryGrant
203 sg:grant.5141674 http://pending.schema.org/fundedItem sg:pub.10.1007/s12350-019-02002-5
204 rdf:type schema:MonetaryGrant
205 sg:journal.1106202 schema:issn 1071-3581
206 1532-6551
207 schema:name Journal of Nuclear Cardiology
208 schema:publisher Springer Nature
209 rdf:type schema:Periodical
210 sg:person.01016541331.85 schema:affiliation grid-institutes:grid.5386.8
211 schema:familyName Karakatsanis
212 schema:givenName Nicolas A.
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016541331.85
214 rdf:type schema:Person
215 sg:person.01144544053.52 schema:affiliation grid-institutes:grid.59734.3c
216 schema:familyName Moreno
217 schema:givenName Pedro R.
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144544053.52
219 rdf:type schema:Person
220 sg:person.01157142341.97 schema:affiliation grid-institutes:grid.137628.9
221 schema:familyName Block
222 schema:givenName Kai Tobias
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157142341.97
224 rdf:type schema:Person
225 sg:person.012675750435.21 schema:affiliation grid-institutes:grid.137628.9
226 schema:familyName Benkert
227 schema:givenName Thomas
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012675750435.21
229 rdf:type schema:Person
230 sg:person.01310147073.34 schema:affiliation grid-institutes:grid.411766.3
231 schema:familyName Abgral
232 schema:givenName Ronan
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310147073.34
234 rdf:type schema:Person
235 sg:person.01320530175.66 schema:affiliation grid-institutes:grid.511179.a
236 schema:familyName Dweck
237 schema:givenName Marc R.
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320530175.66
239 rdf:type schema:Person
240 sg:person.013302112573.56 schema:affiliation grid-institutes:grid.15496.3f
241 schema:familyName Vergani
242 schema:givenName Vittoria
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013302112573.56
244 rdf:type schema:Person
245 sg:person.01330727704.39 schema:affiliation grid-institutes:grid.59734.3c
246 schema:familyName Trivieri
247 schema:givenName Maria Giovanna
248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330727704.39
249 rdf:type schema:Person
250 sg:person.0701551334.41 schema:affiliation grid-institutes:grid.59734.3c
251 schema:familyName Robson
252 schema:givenName Philip M.
253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701551334.41
254 rdf:type schema:Person
255 sg:person.0767760340.89 schema:affiliation grid-institutes:grid.59734.3c
256 schema:familyName Kovacic
257 schema:givenName Jason C.
258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767760340.89
259 rdf:type schema:Person
260 sg:person.0772637666.38 schema:affiliation grid-institutes:grid.59734.3c
261 schema:familyName Fayad
262 schema:givenName Zahi A.
263 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772637666.38
264 rdf:type schema:Person
265 sg:pub.10.1007/s00259-015-3060-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041845590
266 https://doi.org/10.1007/s00259-015-3060-3
267 rdf:type schema:CreativeWork
268 sg:pub.10.1007/s00259-015-3089-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050739103
269 https://doi.org/10.1007/s00259-015-3089-3
270 rdf:type schema:CreativeWork
271 sg:pub.10.1007/s11307-013-0629-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015514428
272 https://doi.org/10.1007/s11307-013-0629-8
273 rdf:type schema:CreativeWork
274 sg:pub.10.1007/s12350-015-0159-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032263638
275 https://doi.org/10.1007/s12350-015-0159-7
276 rdf:type schema:CreativeWork
277 sg:pub.10.1007/s12350-015-0197-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010708313
278 https://doi.org/10.1007/s12350-015-0197-1
279 rdf:type schema:CreativeWork
280 sg:pub.10.1007/s12350-016-0451-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007519693
281 https://doi.org/10.1007/s12350-016-0451-1
282 rdf:type schema:CreativeWork
283 sg:pub.10.1007/s12350-017-1118-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092898866
284 https://doi.org/10.1007/s12350-017-1118-2
285 rdf:type schema:CreativeWork
286 sg:pub.10.1007/s12350-019-01928-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122202093
287 https://doi.org/10.1007/s12350-019-01928-0
288 rdf:type schema:CreativeWork
289 sg:pub.10.1186/s40658-014-0101-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049937272
290 https://doi.org/10.1186/s40658-014-0101-0
291 rdf:type schema:CreativeWork
292 grid-institutes:grid.137628.9 schema:alternateName Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
293 schema:name Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
294 Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University School of Medicine, New York, NY, USA
295 rdf:type schema:Organization
296 grid-institutes:grid.15496.3f schema:alternateName Cardiothoracic and Vascular Department, Vita-Salute University and San Raffaele Hospital, Milan, Italy
297 schema:name Cardiothoracic and Vascular Department, Vita-Salute University and San Raffaele Hospital, Milan, Italy
298 Translational and Molecular Imaging Institute, Leon and Norma Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, One Gustave Levy Pl, 1470 Madison Ave, TMII – 1st floor, 10029, New York, NY, USA
299 rdf:type schema:Organization
300 grid-institutes:grid.411766.3 schema:alternateName Department of Nuclear Medicine, University Hospital of Brest, European University of Brittany, EA3878 GETBO, Brest, France
301 schema:name Department of Nuclear Medicine, University Hospital of Brest, European University of Brittany, EA3878 GETBO, Brest, France
302 rdf:type schema:Organization
303 grid-institutes:grid.511179.a schema:alternateName British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
304 schema:name British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
305 rdf:type schema:Organization
306 grid-institutes:grid.5386.8 schema:alternateName Division of Radiopharmaceutical Sciences, Department of Radiology, Weill Cornell Medical College, Cornell University, New York, NY, USA
307 schema:name Division of Radiopharmaceutical Sciences, Department of Radiology, Weill Cornell Medical College, Cornell University, New York, NY, USA
308 Translational and Molecular Imaging Institute, Leon and Norma Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, One Gustave Levy Pl, 1470 Madison Ave, TMII – 1st floor, 10029, New York, NY, USA
309 rdf:type schema:Organization
310 grid-institutes:grid.59734.3c schema:alternateName Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Pl, 10029, New York, NY, USA
311 Translational and Molecular Imaging Institute, Leon and Norma Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, One Gustave Levy Pl, 1470 Madison Ave, TMII – 1st floor, 10029, New York, NY, USA
312 schema:name Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Pl, 10029, New York, NY, USA
313 Translational and Molecular Imaging Institute, Leon and Norma Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, One Gustave Levy Pl, 1470 Madison Ave, TMII – 1st floor, 10029, New York, NY, USA
314 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...